
A LOW-LEVEL LANGUAGE

FOR USE ON THE

MOS 6502 MICROCOMPUTER

By

MARY ANN GERTRUDE LAWRY, B.Sc.

A Project

Submitted to the School of Graduate Studies

in Partial Fulfilment of the Requirements

for the Degree

Master of Science

McMaster University

April 1981

MASTER OF SCIENCE (1981) McMASTER UNIVERSITY

(Computation) Hamilton, Ontario

TITLE: A Low-Level Language For Use On The
MOS 6502 Microcomputer

AUTHOR: Mary Ann Gertrude Lawry B.Sc. (Biochemistry,
McMaster University)

SUPERVISOR: Dr. N.S. Solntseff

NUMBER OF PAGES: x, 139

paae

ABSTRACT

A low-level language, GRASSHOPPER, was developed for use as a

systems programming language on the MOS 6502 microcomputer.

GRASSHOPPER was designed as an alternative to assembly language for

systems programming, and its use requires some knowledge of the MOS

6502 hardware. To facilitate the writing of correct and readable

programs, GRASSHOPPER includes three control structures used in the

higher level structured languages, and provides five distinct data

types.

Lid

ACKNOWLEDGMENTS

I would like to thank my supervisor Dr. Nick Solntseff for

suggesting this challenging project, and for his direction over the

past two years.

I would like to express my appreciation to Chris Bryce for his

frequent assistance with the technical aspects of this project.

I would like to thank my first reader, Dr. Derick Wood for his

valuable comments during the writing of this report.

Finally, I would like to thank the members of the McMaster

University Unit for Computer Science for a very interesting and

educational three years.

iv

CHAPTER

CHAPTER

TABLE OF CONTENTS

1: INTRODUCTION

1.1: The Project

1.2: The Report

2: THE LANGUAGE GRASSHOPPER: SYNTAX

2.1: Data Types, And Identifier béwliawsian

2-1-1: Constant Identifiers

2.1.2: Byte and Array Variables

2.1.3: Word Variables

2.1.4: Zeropage Variables

2.1.5: Condition Identifiers

2.1.6: The Registers

2-2: Data Manipulation

2.2.1: The Operands

2.2.2: The Operations

2.3: Sequence Control

2.3.1: The IF Construct

2.3.2: The CASE Construct

2.3.3: The LOOP Construct

2.4: Statement Delimiters

2.5: Statement Labels

2.6: Summary

10

12

13

14

Ly

19

20

20

21

22

23

26

26

27

32

CHAPTER

CHAPTER

CHAPTER

3: THE LANGUAGE GRASSHOPPER: SEMANTICS AND TRANSLATION

ie ee

323

3e2«L%

Bis 22s

33323

33333

3.4:

3.5:

305413

365223

Z.d0 38

3.6:

46222:

4.3:

4.4;

a

Translation Of The Declarations

Translation Of-The Operands

Byte And Word Operands

Registers As Operands

The Data Manipulation Statements

The Prefix Operator Statements

The Assignment Statements

The Comparison Statement

Line Labels

Sequence Control Statements And Constructs

Translation Of The IF Construct

Translation Of The CASE Construct

Translation Of The LOOP Construct

Summary

GRASSHOPPER COMPILER

Overview Of The GRASSHOPPER Compiler

Translating The Operand

Byte And Word Operands

Registers As Operands

Compilation Of The Declarations

Compilation Of The Statement List

Error Detection And Diagnostics

5: INPUT/OUTPUT AND FILE MANAGEMENT

Sal

5.2:

Disk Input/Output Buffers

Origins Of The Source File

vi

39

41

41

42

44

45

46

50

52

53

55

aT

58

58

62

64

67

68

69

ype

76

81

87

87

88

5.3: Input From Source

5-4: Output To Object.

CHAPTER 6: DESCRIPTION OF THE LEXICAL SCAN

6-1: Character Recognition

6.2: The Symbol Tables

6-2-1: Table Searching Routines

6.2.2: Table Building Routines

6.2.3: Table Reading Routines

6.3: Reading Numeric Literals

6.4: Scanning The Source Code

CHAPTER 7: GENERATION OF OBJECT CODE

7-1: The Object Code

7.1.1: The Label Field

7.1.2: The Operator Field

7.1.3: The Operand Field

7.2: System Line Labels

7.3: To Output A Line Of Object Code

CHAPTER 8: DISCUSSION

8.1: Testing The Compiler

8.2: Use of GRASSHOPPER

8.3: How The Language Could Be Further Developed
Ws

APPENDIX A: Index of Routines

APPENDIX B: Examples Of Test Programs

REFERENCES

Wied

89

91

93

95

100

102

104

105

107

107

110

lll

Lil

112

112

113

115

120

120

123

125

127

129

139

2«3%

Paks

265%

2.6:

352%

3.3:

3.4:

BCH Ae

TABLES

The Six Classes of Declaration Statements

Examples of Constant Declarations

Uses of the ZEROPAGE Addressing Constants

Processor Status Register

Equivalent Conditions

Statement Delimination in GRASSHOPPER

Summary Of The Translation Of Identifier Declarations

Summary Of The Translation Of Byte Operands

Illegal Addressing Modes For Assembler Code

Instructions

Translation Of The Prefix Operations

The Translation Of The Assignment Statement:

TERM -> RESULT;

Where One Or Both Operands May Be Registers

The Translation Of The Assignment Statement:

TERM OPERATOR TERM <-> RESULT;

Where None Of The Operands Is A Raetague

The Translation Of The Calculation Part Of The

- Assignment Statement:

TERM OPERATOR TERM -> RESULT;

Where The Terms Include Registers

viil

10

ll

17

17

ya)

28

40

41

45

46

47

48

50

3.8:

6.2:

6.3:

6.4:

665%

6.6:

The Translation Of The Comparison Statement

Summary Of System Line Labels

The Translation Of The Simple Sequence Control

Statements

The Translation Of IF Conditions Using Relational

Expressions And CONDITION Variables

Summary Of The Translation Of The IF Construct

The Key Words Used In GRASSHOPPER, And Their Tokens

Summary Of The Possible Values Of NAMFLG

Compilation Error Summary: Letters

Compilation Error Summary: Numbers

Parameters Required For The Disk I/O Buffers

Source File Header

Summary of Operand Types

CHRFLG Values For Character Types

CHRFLG Values For Letters and Numbers

Summary of CHRNAM, CHRKY1 and CHRKY2

CHRFLG and NXTSYM Values For The Operators

Constants Describing Format of Symbol Table Records

Vs

pire

a1

53

53

54

56

63

68

82

84

88

89

94

96

96

98

99

101

6.2:

6.3:

Fale

FIGURES

Example of a Subroutine Map

Example of a GRASSHOPPER Program

Translation Of Figure 2.1

Subroutine Map Of The Translator

Subroutine Map For The Translation Of The

Declarations

Example Of An Error Dump

Subroutine Map For CLEGAL

Record Format For The Symbol Tables

Subroutine Map For The Symbol Tables

Subroutine Map For PUTLIN

30

59

65

71

86

97

101

102

110

CHAPTER 1

INTRODUCTION

1.1 The Project

This project is divided into two parts: the design of a

structured, low-level language, GRASSHOPPER, for use on the MOS 6502

microcomputer; and the development of a GRASSHOPPER compiler which

produces MOS 6502 assembly language.

The purpose of the development of GRASSHOPPER has been to

provide an alternative to assembly language programming on the 6502.

Assembly language is still a popular choice for systems programming

for micro-computers because of its flexibility and efficiency in

Comparison to high-level languages. However the disadvantages of

assembly language programming are well documented for mini and micro

computers, namely, that correctness is more difficult to guarantee and

that readability is poor. In particular the writing of structured and

intelligible programs is almost impossible to achieve. On the other

hand, high-level languages are designed to be readable, to encourage

the writing of correct and structured programs, but are usually not

easily translated into highly efficient code. In this project I have
y6

attempted to design a low-level language that combines the advantages

of assembly language and high-level languages while substantially

minimizing the disadvantages.

To be attractive to the user there must be a minimal loss of

flexibility in programming. For this reason, GRASSHOPPER provides

some access to the processor status register, to the accumulator and

to the X and Y registers. All core addressing methods used by the MOS

6502 are available to GRASSHOPPER. The ability to embed assembly

language code is provided for those cases when the desired code cannot

be written in GRASSHOPPER.

Another criterion of my language design is that the writing of

readable and correct code should be facilitated. Control statements

have therefore been provided which help the reader to wmnderstand the

logical structure of the GRASSHOPPER programs. These statements have

been designed to be wmderstandable with minimal explanation so they

can be learned quickly and remembered easily.

Finally, the language design has been strongly influenced by

consideration of ease of parsing and compilation.

The overall design of the GRASSHOPPER compiler reflects the

goal of not doing anything the assembler already does adequately. The

principal design criteria are:

1/ Economy of space. This is of major importance when

working with a micro-computer. In designing the structured

Statements and their translation I have attempted to produce

object *eode with little increase in size over what would have been

eendanad if the source code had been written in assembly language

to start with.

2/ Speed of translation. This was a sedi deinen in the

design of the symbol tables, but was otherwise of much lower

priority then space.

3/ Expandability and adaptability. These are important

considerations because it should be possible to adapt GRASSHOPPER

to future needs. Where practical, I have applied the principles

of modularity and structured design, and have made the assembler

source code for the compiler as easy to read as_ possible.

Frequent use has been made of constants to make certain changes

easier and to enhance readability.

1.2 The Report

Chapter 2 of this report introduces the language, GRASSHOPPER,

discussing its data types and identifier declaration, its statements

and constructs, and finally precisely describing its syntax using

syntax graphs. In Chapter 3, the semantics of GRASSHOPPER is

described in terms of the MOS 6502 assembly language, which is the

object code of the compiler. In Chapter 4 the GRASSHOPPER compiler is

described in general, including a discussion of error detection and

diagnostics. Chapters 5, 6 and 7 discuss three major areas in the

implementation: 1/0 and file management; the lexical scan; and _ the

format and generation of the object code. Finally, Chapter 8

summarizes the testing of the translator, discusses the usability of

GRASSHOPPER, and presents some ideas for further language

developement.

Throughout this report I have illustrated the structure of

sections of the compiler using subroutine maps. Each node of such a

Map represents a named routine. Each leaf will be enclosed in an

ellipse if it can call no other routines, or in a rectangle if it may.

In many cases a leaf node appearing on one tree will be a root node in

another tree. Appendix B indicates where each referenced routine is

described. The text accompanying a subroutine map will indicate wder

what circumstances each root node routine may be called.

FIGURE 1.1 Example Of A Subroutine Ma

AIN

In the sample map show in Figure 1.1 the root routine MAIN may call:

SUB1 which calls no more routines; SUB2 which may call SUB3 and SUB4;

and ALT1, ALT2 or ALT3 which are called using indirect addressing

where the address is stored in a pre-set location. SUB3 may call one

or more other routines, not listed here.

All algorithm descriptions are given in pseudo-GRASSHOPPER.

The extra features of this notation include; the procedure header and

parameter passing capability in subroutine calls; complex expressions

as conditions in the IF construct; and the WITH construct.

The WITH construct is similar to that found in Pascal, but is

used to access individual bits of a byte, instead of fields of a

record. In conjunction with this, the identifiers BITO, BIT1,..,BIT7

will represent boolean variables. BIT i will be true when the i’th

bit of the identified value is 1 and false otherwise. Thus:

with CHRFLG do

if BIT7 then statement list 1 endif;

if not BITS then statement list 2 endif;

endwith

may be described as follows:

if the seventh bit of CHRFLG = l

then execute statement list 1 endif

if the fifth bit of CHRFLG = 0

then execute statement list 2 endif

CHAPTER 2

THE LANGUAGE GRASSHOPPER: SYNTAX

GRASSHOPPER has been written as an extension to the existing

assembler with little attempt made to add to the primitive operations

and data types already provided by the hardware.

Currently the scope rules for a GRASSHOPPER program are those

of an assembly language program, that is all identifiers declared in a

program are global to that program. Some structure has been

introduced in that all identifiers must be declared at the beginning

of the program.

Sequence control statements and conditional statements have

been provided to aid in designing and wumnderstanding the logical

structure of a GRASSHOPPER program. Simple one-to-one translatable

commands have been included to allow the use of subroutine calls but

parameter lists and more elaborate subprogramming capabilities have

not been implemented. This is a prim area for extending GRASSHOPPER.

A GRASSHOPPER program consists of:

1/ A header line giving the starting address for the executable

code, for example:

program ADDRESS;

where ADDRESS is an integer in the range o..246_),

2/ A declaration section in which all identifiers used must be

listed and assigned a type. Constants must be given values, and

variables may be given initial values. Line labels are not

oe

declared;

3/ The key word begin;

4/ The statement list, which consists of the executable

statements of the program;

5/ The key word end.

Several general aspects of GRASSHOPPER are briefly commented

on here. Declarations and Data Types will be discussed in Section

2.1. Section 2.2 will describe the data manipulation and comparison

operations. Sequence control will be discussed in Section 2.3.

Statement delimiters will be discussed in Section 2.4 and Section 2.5

describes the use of line labels. Finally a summary of the syntax of

GRASSHOPPER will be given in Section 2.6.

Reserved words are not extensively used, instead, key words

are delimited by single quotes or are in lower case letters. The

letters "A", "x", "y'", "S" and "P' are reserved as variable names by

the OSI resident assembler/editor. "S" and "P" are not directly

accessible using GRASSHOPPER so their use is illegal. "A", "X" and

"Y" represent the accumulator and the X and Y registers respectively.

In addition, "X", as the first letter in an identifier with two or

more characters, is reserved by the compiler for system line labels,

[Sections 3.4 and 7.2].

Identifiers are made up of digits and upper case letters and

must start with a letter. Only the first six characters will be used

by the compiler so these must uniquely define the identifier.

Numerical literals may be base 2, 8 or 16, and each value must

be immediately preceded by the character %, @ or $ respectively, to

indicate the number base. .Thus %1010, @12 and SOA all equal 10, (base

ten). Note that the letters used in hexadecimal numbers must be in

upper case.

Character and string constants must begin and end with double

quotes, ("), for example: "This is a string", and the strings may not

exceed 28 characters in length.

Statements are separated by statement delimiters or by

semi-colons. This will be further discussed i Section 2.3. A single

statement may extend over one or more lines, and more than one

statement may occur on a line. A single item within a statement, such

as an identifier or key word, may not be split between two lines.

Comments begin and end with "!", may extend over several

lines, and may be inserted between items in a statement:

if ZERO then ! empty list ! $00 -> FOUND;...

Assembly language inserts may be placed anywhere a statement

may. Each insert is enclosed in square brackets and is copied

unchanged into the compiler output. In the following example, an

insert is used to comment the object code:

if LENGTH > MAX then [; overflow]...

2.1 Data Types, And Identifier Declaration

The smallest addressable piece of information on the MOS 6502

is the 8-bit byte. Addressing one byte requires a 16-bit address,

mless it is on the zero page, in which case an 8-bit address is

required. The data types available in GRASSHOPPER reflect these

facts. In this section I will discuss the declaration of identifiers,

and the addressing of data. The kinds of operations which may be

performed are discussed in Section 2.2.

There are two primitive data types: the Byte and the Word.

The type Byte corresponds to an 8-bit computer byte and contains a

subrange ere a | of the integers. ASCII characters are considered to

be a subset of Byte, from 00..$7F. The type Word corresponds to 16

bits, or 2 computer bytes, and contains the subrange 0.216) of the

integers.

In addition to these two primitive types there is one

structured data type, the Array. Arrays are one dimensional with up

to 28 elements; the base type is always Byte.

Except for line labels, each identifier in a GRA SSHOPPER

program must be declared. The declaration section of a program

consists of a list of declaration statements, each of which begins

with a key word identifying the declaration type followed by a list of

identifiers separated by commas and ending with a semi-colon. For

example:

byte NAME1, NAME2, NAME3;

There are six declaration types, which can be grouped into three

10

classes, as in Table 2.1

TABLE 2.1: The Three Classes of Declaration Statements

Declaration Class Declaration Type

Constant constant

Variable byte
word
array

zeropage

Read-Only Variable condition

2.1.1 Constant Identifers

Each constant identifer must be assigned a value when it is

declared. The value assigned may either be a literal or a previously

de fined constant identifier, for example:

constant TRACK = $65, OTHER = TRACK;

Byte and Word constant identifiers may be declared in the same

declaration statement, and type assignment will depend on the size of

the literal assigned. Table 2.2 gives examples of constant

declarations and of the type and values that result from these

declarations.

A constant of type Word followed by the selector lo or hi will

specify the least or most significant part of the value respectively.

ll

TABLE 2.2: Examples of Constant Declarations

Declaration : Type Value

ONE = $12 BYTE $12

TWO = $0012 WORD $0012

THREE = $1234 WORD $1234

FOUR = 211111111 BYTE SFF

FIVE = 4111111111111 WORD SOFFF

SIX = ONE BYTE - $12

SEVEN = TWO WORD $0012

EIGHT = THREE hi BYTE $12

NINE = THREE lo BYTE $34

TEN = "A" BYTE 41

Preceding a constant identifier or numeric literal with the

key word loc in any expression indicates that the value given is to be

interpreted as the core address of the operand. For example, assuming

that SIZE has been declared as a Byte variable:

loc $5A -> SIZE;

will assign the value found at the address $5A to the variable SIZE,

while:

$5A -> SIZE;

will assign the value $5A to this variable. In the first case loc $5A

is the absolute address of the operand, and in the second case $5A is

the immediate operand.

12

2.1.2 Byte and Array Variables

Byte and Array variables may be either local or external.

Local variables are located in the data space which precedes the

executable code in the object program, their absolute addresses in

core need not be know by the programmer. External variables are

declared within the Byte or Array declaration in the following way:

NAME at ADDRESS

where NAME is the variable identifier and ADDRESS-the absolute address

in core of the variable. The address must be given as a numeric

literal or a predefined constant. These variables may not be

initialized in the declarations, and the dimension of an external

array is not declared. Otherwise, there is no difference between the

use of an external variable and the use of a local variable of the

same type.

A byte declaration statement may be used to declare local and

external variables of type Byte. Literals or pre-defined Byte

constants may be used to initialize the local variables but

initialization is not required. Thus:

byte COUNT, MAX = $2A, FLAG at $35B0;

declares COUNT and MAX to be local Byte variables and stores the value

$2A in MAX. FLAG is declared as an external Byte variable whose

absolute address is $35B0.

An array declaration is used to declare all local and external

variables of type Array. Arrays are one dimensional, are indexed

ZS

upwards from zero and each element is of the type Byte. The largest

possible array has 28 elements. The maximum index of a local array is

declared as a numerical literal in parentheses immediately after the

identifier. If all elements of an array are initialized, declaration

of the length is optional, but the parentheses are still required.

Items used to initialize an array are enclosed in parentheses:

NAME(LENGTH) = (ITEM 1, ITEM 2...)

and may include Byte literals, pre-declared Byte constants, and

string constants. Thus, in this example:

array ARRAY1 at $4900, ARRAY2(SOF),

ARRAY3($05) = ("HELLO", $05),

ARRAY4 ($05) = ($1, $2),

ARRAY5S() = ("STRING") ;

ARRAY] is external, ARRAY2 is local with $10 elements indexed from

$00 to $OF and is not initialized. ARRAY3 and ARRAY4 both have $06

elements, indexed from $00 to $05. ARRAY3 is fully initialized but

only the first two elements of ARRAY4 are. ARRAYS is fully

initialized with no declaration of length.

The individual elements of an array are of type Byte and are

addressed within the array using the X or Y register:

ARRAY1,X <-> ARRAY2,Y;

2.1.3 Word Variables

Local and external Word variables are declared with a word

declaration statement. Local Word variables may be given initial

values in the declarations using numerical literals or constant

14

identifiers, but not character constants. External Word variables are

declared in the same way that external Byte and Array variables are,

{Section 2.1.2].

In the current implementation of GRASSHOPPER, the operations

which are outlined in Section 2.2.2 may not be used on operands of

type Word. Instead, the least and most significant bytes of Word

variables and constants may be addressed by using the selectors lo and

hi, respectively. The high or low part of a Word variable may be used

anywhere a Byte variable may. Thus, given the following declarations:

word NAME1, NAME2 = $4000; byte NAME3;

then one can write, for example:

$50 -> NAME2 hi; NAME3 -> NAME2 lo;

but not:

NAME] -> NAME2; NAME3 -—> NAME2;

2.1.4 Zeropage Variables

Zeropage variables are special variables located on the zero

page, which are used for indirect addressing. These variables are

declared as follows:

zeropage at $40, ZNAME1;

zeropage at $50, ZNAME2, ZNAME3, ZNAME4;

The value immediately following the key word at is the address of the

first variable in the declaration statement. The address of each

succeeding variable is obtained by incrementing the value of the

address of the previous one by _ two. Hee example, the second

declaration above is analogous to:

15

word ZNAME2 at $50, ZNAME3 at $52,

ZNAME4 at $54;

There are two types of indirect addressing modes used for

accessing data: indexed indirect which uses the X index register and

indirect indexed which uses the Y index register. In both cases the

key word ind is used as a prefix, for example:

ind ZNAME1,X -> ind ZNAME2,Y;

Both of these methods require locations on the zero-page in which

sixteen bit addresses may be stored. The address is always stored

with the low order byte first, followed by the high order byte.

For indexed indirect addressing, the Zeropage variable is an

implied external array, located on the zero page. It contains a

series of addresses, such that the n’th address begins at the

displacement 2(n-1) in the array. The values stored in this array

May be accessed using either the X or Y index register for absolute

indexed addressing. Thus, given the above declarations:

$04 => X;

$00 =—> ZNAME1,X; inc X;

$45 -> ZNAMEL1,X;

assigns the value $4500 as the third address stored in the Zeropage

array ZNAME1. Then an operand whose address is stored in this array

May be accessed using the X index register for indexed indirect

addressing, Thus:

$04 -—> X;

ind ZNAME1,X -> A;

results in the value found at address $4500 being loaded into the

16

accumulator. In this example the effective address was stored in zero

page locations $44 and $45.

For indirect eaaacus addressing of data, the Zeropage variable

is a external word variable, located on the zero page. The value

stored in this variable is accessed by absolute addressing, using the

selectors lo and hi to address the least and most significant bytes,

respectively. This value is the address in core of an implied array

of operands. Thus, an operand within this implied array is accessed

using the Y index register for indirect indexed addressing. For

example, given the above declarations:

$04 -> Y;

$00 => ZNAME2 lo;

$45 -> ZNAME2 hi;

ind ZNAME2,Y -> A;

results in the value found at address $4504 being loaded into the

accumulator. In this example, the effective address was found by

adding the Y register to the address stored in zero page locations $50

and $51.

Table 2.3 summarizes the addressing modes in which Zeropage

variables are used.

Ld

TABLE 2.3: Uses of the Zeropage Addressing Constants

Operand Addressing Mode

ZEROPAGE hi Absolute Addressing

ZEROPAGE lo Absolute Addressing

ZEROPAGE,X Absolute Indexed Addressing

ZEROPAGE,Y Absolute Indexed Addressing

ind ZEROPAGE,X Indexed Indirect Addressing

ind ZEROPAGE,Y Indirect Indexed Addressing

2.1.5 Condition Identifiers

These are special identifiers used to access the individual

bits of the processor status register. Each bit of this register is

used to indicate the status of a particular condition in the

processor.

TABLE 2.4: Processor Status Register

Bit Number Name Significance

0 Carry 1 = True

ik Zero 1 = Zero Result

2 Interrupt 1 = Disable

3 Decimal Mode 1 = True

4 Break Command 1 =A BRK has been executed

5 - None

6 Over flow 1 = True

fs Negative 1 = Negative Result

18

Four of the processor status bits or flags shown in Table 2.4 are

accessible through GRASSHOPPER:

The Carry flag, which is adjusted during each arithmetic

operation. During addition it is set to one if there is a carry,

and cleared to zero if there is not. During subtraction it is set

for result greater than or equal to zero, and cleared otherwise,

indicating a borrow.

The Zero flag, which is set when any data transfer or

calculation operation results in a zero, otherwise it is cleared.

The Overflow flag, which is important during signed number

arithmetic and is set whenever the result is outside the range of

-127 to +127 decimal.

The Negative flag will always be equal to the seventh bit

of the result of any data transfer or calculation operation. This

is important during signed number arithmetic since the seventh bit

gives the sign.

The Condition identifiers represent Boolean variables which

give information on the state of specific bits of the status register.

Each must be declared to equal, or not equal one of the bits. For

example:

condition CARRY = $0, NOTCARRY /= $0,

ZERO = $l, NOTZERO /= $1,

OVER = $6, NOTOVER /= $6,

NEG = $7, NOTNEG /= $7;

Thus, CARRY, which has been declared to be equal to bit zero, will be

true when bit zero is set to one, and false when bit zero is cleared.

19

Conversely, NOTCARRY will be false when bit zero is set and true when

bit zero is cleared. The use of these variables will be discussed in

Section 2.3.1.

2.1.6 The Registers

The Accumulator and the X and Y index registers, referred to

as A, X and Y respectively, are 8-bit registers in the MOS 6502

microcomputer. The accumulator will be involved in most

data-manipulation operations even if it is not specifically referenced

in the GRASSHOPPER code, and will be altered in almost all

arithmetic, Boolean and comparison operations. The index registers are

used in three modes of addressing: absolute indexed; indexed

indirect and indirect indexed. These modes have already been

discussed in Sections 2.1.2 and 2.1.4.

The registers may also be used as explicit operands in the

same way that any byte variable may be with two restrictions which

will be discussed in the next section.

20

2.2 Data Manipulation

2.2.1 The Operands

The preceding discussion has concentrated on the declaration

of identifiers and their data types. For the remainder of this

chapter an understanding of their use is more important, and for this

purpose the word term will refer to any possible operand which

represents one byte of information. Terms may be subdivided further

into Byte Variables and Byte Constants.

Byte Byte

Variables Constants

loc CONST1 CONST1

loc CONST2 CONST2 hi

loc Numerical Literal CONST2 lo
<= SFFFF

VAR8 Numerical Literal <= SFF

ARRAY ,X Literal Character

ARRAY , Y

VARL6 hi

VAR16 lo

ZEROPG,X

ZEROPG,Y

ind ZEROPG,X

ind ZEROPG,Y

ZEROPG hi

ZEROPG lo

Registers A, X and Y

21

The registers A, X and Y have been included wnder Variables

with the following stipulations. They may appear anywhere a declared

byte variable may except that there may be no more then one register

as operand on the left hand side of any assignment statement and that

one register may not be directly compared to another. The reason for

this is that in both cases translation would require the use of an

extra holding variable since there are no assembler code instructions

for performing these operations directly. Assigning to and using A, X

and Y will be further discussed in the next section.

2.2.2 The Operations

The operators which may act on a term may be divided into the

three classes: arithmetic operators; relational operators and

prefix operators.

The arithmetic operators are: (+) plus; (-) minus; and; or

and eor. These are hardware implemented operations, the operations

of multiplication and division, which would require software

implementation, are not available in GRASSHOPPER. These operators are

used in the assignment statement, which is in this form:

Arithmetic
Term Operator Term -> Byte Variable;

The right assignment form was chosen since it is easier to translate

than the left assignment form. There is only one operation allowed

per statement. If several are required then as many assignment

statements must be written with assignment to the akcumatites in each

of the intermediate steps.

a2

The relational operators are: (=) equal to; (/=) not equal

to; (<) less then; (<=) less then or equal to; (>) greater then;

and (>=) greater then or equal to. These operators are used in the

relational expression which is in this form:

Relational
Term Operator Term

This expression may be used as the condition in the IF construct which

will be described in Section 2.3.1.

The prefix operators are a special class of operators which

only have one operand, and which proceed that operand. They are the

increment, ince and the decrement, dec, which will increase or decrease

the value of the operand by one, respectively. The statements in

which they are used are of this form:

inc Byte Variable;

dec Byte Variable;

One additional data-manipulation statement is the comparison

statement:

Term 7 Term;

which loads the first factor into the accumulator and compares it to

the second. The important effect of this operation is on the status

register. The use of this statement is further discussed in Section

Die 3 ee

2.3 Sequence Control

There are four simple sequence control statements in

GRASSHOPPER:

23

1/ goto Destination; which transfers control to the address in

core indicated by Destination.

2/ gosub Destination; which calls the code at Destination as a

subroutine. |

3/ return; which causes a return from the subroutine.

4/ exitloop; which is used to exit the loop construct. This will

be discussed in Section 2.3.3.

The destination of the GOTO and GOSUB statements may be given

as: a word constant or literal representing the absolute address of

the destination; or as an identifier which is used as a statement

label elsewhere in the program. Statement labels are discussed in

Section 2.5.

In addition to these there are three control structures: Tr’s

CASE and LOOP, each of which has associated with it a specific

terminating delimiter: endif; endcase and endloop respectively.

This format was chosen over the begin ... end compound statement found

in Pascal because the latter leads to a confusing multiplicity of

end’s when statements are nested.

2.3.1 The IF Construct

The complete GRASSHOPPER IF construct is of the form:

if condition then statement list

orif condition then statement list

orif condition then statement list

-_-— == = = = = ee ee ewe ew Ke eH =

else statement list endif

24

where a condition is either a relational expression as described in

Section 2.2.2, or a Condition identifier, Section 2.1.5. No more

then one statement list will be executed in an IF construct. Lf =a

condition is found to be true, its accompanying statement list will be

executed, then control will be transferred to the next executable

statement after the endif, no succeeding condition in the construct

will be tested. The presence of one or more ORIF portions is

optional. The ELSE portion is also optional and when it is present

its statement list is executed only if none of the previously tested

conditions is true. Thus, the simplest form of the IF construct is:

if condition then statement list endif

in which the statement list is executed if the condition is true, and

nothing is executed if the condition is false.

Given the following declarations:

condition NLESSTHAN = $00, LESSTHAN /= $00,

EQUAL = $01, NEQUAL /= $01;

byte AA, BB;

Table 2.5 shows equivalent conditions using relational expressions and

Condition variables. The first is more explicit, but the second is

preferred if more then one condition is to be tested on the same

comparison.

25

TABLE 2.5: Equivalent Conditions; Relational Expressions
and Condition variables where the IF is proceeded
by the statement: AA _: BB;

Relational Expression condition variable

if AA = BB then if EQUAL then

if AA /= BB then if NEQUAL then

if AA < BB then if LESSTHAN then

if AA >= BB then if NLESSTHAN then

if AA > BB then if NEQUAL then

if NLESSTHAN then

Thus the following two segments of GRASSHOPPER code will be logically

equivalent:

if AA = BB then gosub TRANSFER endif

and

AA : BB;

if EQUAL then gosub TRANSFER endif

and the same object code will be generated in both cases. This will

be discussed further in Section 3.5.1.

The case of AA <= BB is not included in this table because

there is no straight forward equivalent using Condition variables. If

GRASSHOPPER is ever extended to allow more complex conditions for the

IF statement, then:

if AA<= BB then.....

and

if EQUAL or LESSTHAN then.....

will be equivalent.

26

2.3.2 The CASE Construct

The CASE construct names a selector, which must be a Byte

variable, followed by a eertas of statement lists each of which is

guarded with one or more terms. The selector will be compared to each

guard, if a match is foumd the statement list following that guard

will be executed. Control will then be transferred to the next

statement after the CASE construct. If more then one guard is equal

to the selector, only the first one encowtered will be matched, so

only one statement list may be selected for execution. The CASE

statement is of this form:

case Byte Variable

of Term (, Term): statement list

of Term (, Term): statement list

other statement list

endcase

The OTHER portion is optional; if it is absent and there is no match

made then there is no action. The translation of this construct

results in the selector being loaded into the accumulator and compared

to each guard. Since the X and Y registers may not be compared to the

accumulator, these registers are not legal as case guards, however,

they are legal as the selector. The accumulator may never be a case

guard.

2.3.3 The LOOP Construct

There is only one looping constuct available in GRASSHOPPER,

ra

and it was designed to be as simple as possible. This allows the

programmer to use one construct to write the iterative or conditional

loop required for the problem. The format of the LOOP construct is:

loop statement list endloop

The EXITLOOP statement is used to exit the loop to the next executable

statement after endloop. Generally, exitloop is part of a statement

list in an IF or CASE construct. For example; where CURRNT and

LENGTH are Byte variables:

loop

if CURRNT = LENGTH then exitloop endif

gosub TRANSFER;

endloop

2.4 Statement Delimiters

The structured statements: CASE, LOOP and IF each have a

leading and a terminating delimiter. The IF and CASE statements also

have intermediate delimiters which separate statement lists. The two

other sets of delimiters which are important to the logical structure

of a GRASSHOPPER program are: the square brackets which enclose

assembler code inserts; and the key words begin and end which precede

and terminate the complete statement list of a GRASSHOPPER program.

Table 2.6 summarizes these statement delimiters.

28

TABLE 2.6: Statement Delimination in GRASSHOPPER

Structure Leading Intermediate Terminating

Delimiter Delimiters Delimiter

Verb list begin end

LOOP statement loop endloop

IF statement it orif, else endif

CASE statement case of, other endcase

Assembler code [J

Insert

The simple statement types in GRASSHOPPER have been described

in the preceding sections, they are:

1/ The Assignment Statement;

2/ The Comparison Statement;

3/ The Sequence Control Statements.

An intermediate or terminating statement delimiter must occur after

each simple statement. Where the end of a statement list has been

reached, the appropriate intermediate or terminating delimiter from

table 2.6 is used. In all other cases the semi-colon is used as the

terminating statement delimiter. An example of a GRASSHOPPER program

is given in figure 2.1 which should clarify this. Note that a

semi-colon which occurs at the end of a statement list and before one

of the intermediate or termination delimiters in table 2.6 is ignored.

This means that a semi-colon preceding an else is not illegal, just

unnecessary. Similarily, a semi-colon following an a terminating

delimiter such as endif is ignored.

fA

2.5 Statement Labels

A statement label is a special identifier which is not listed

in the declarations and which is used to reference an executable

Statement. The label and the statement are separated with a comma.

Any executable statement in a GRASSHOPPER program may be prefixed by a

label, except for the first statement in a statement list of a LOOP,

IF or CASE control structure. For example, where COUNT is a Byte

variable and LABEL a statement label:

if COUNT = $FF then exitloop endif

LABEL1, ine COUNT;

is legal, but:

if COUNT = S$FF then exitloop

else LABEL1, inc COUNT endif

is illegal.

A statement label may be used for the destination part of a

GOTO or GOSUB statement. Figure 2.1 illustrates the use of statement

labels in a GRASSHOPPER program. Note that a section of code in the

program has been labeled and used as a subroutine by another part of

the program.

I ce a

a

30

FIGURE 2.1: Example Of A GRASSHOPPER Program

10 ’“PROGRAM’ GRSHOP $4000;

20 ! This is a simplified version of the program
30 I used to store and retrieve the assembled version

40 of GRASSHOPPER. !

50
60 “CONSTANT’ DOS = $2A51, INWEKO = $2340,

70 OUTSTR = $2D73, SEEKA = $26BC,

80 LDREAD = $2Bl1A, SAVE = $2C3A,

90
100 GR: =<$0)), LF = SOA, TOTAL = $02;

110
120 ’BYTE’ DSRNO ’AT’ $265E, DSRLEN “AT’ $265F, SAVX;

130
140 ’ARRAY’ ADDRESS() = ($91, $9D, $A9),
150 TRACK () = ($16, $18, $20);

160
170 “WORD’ ZADDRESS ’AT’ SFF;

180

190 “BEGIN’ $00 -> SAVX;

200
210 -- ASK, “GOSUB’ OUTSTR;

220 [»BYTE CR,LF, ’1/LOAD 2/UPDATE ?°,$00]

230 *“GOSUB’ INWEKO;

240
250 “CASE” A

260 SOps Sie = -b00r- ! retrieve from disk !
270 *GOSUB’ NEXT;

280 “GOSUB’ LDREAD;
290 “ENDLOOP’

300
310 “GETo "S225 LOOP= ! save on disk !
320 “GOSUB’ NEXT;

330 SOC -> DSRLEN; “GOSUB’ SAVE;

340 “ENDLOOP’

350
360 * OTHER’ “GOTO” ASK;

370 “ENDCASE’”

380

31

390 ! The following code is called as a subroutine to PERE

400 for either a read from, or a write to disk !

410
420 NEXT, SAVX -> X;

430 “TR x = TOTAL “CHEN = GOTO DOS ! end of run !

440 “ELSE

450 ADDRESS,X -> ZADDRESS “HI’; ! address in core !

460 $00 -> ZADDRESS ’L0O’;

470 $01 -> DSRNO; ! sector number !
480 X + $1 -> SAVX;

490 TRACK,X -> A;
500 “GOSUB’ SEEKA; ! finds track, number in A !

510 “ ENDIF’
520 “RETURN’ ;

530 “END’.

32

2-6 Summary

This section presents a description of the syntax of

GRASSHOPPER. The basic symbols will be defined first, followed by

Syntax graphs which will describe the constructs of GRASSHOPPER. The

Syntax graph notation used here is based on that used by Wirth:

((Wirth 76], pp 288-295). Each terminal symbol in a graph is enclosed

in an ellipse, and each non terminal is enclosed in a rectangle.

Letter = Upper case letter or Lower case letter.

Upper case letter = A, B, C, D, E, F, G, H, I, J, K, L, M,

O,--P55Qy RS oS ts Us VS Wo ho ee ee

Lower case letter wa, <b Cy Oemewt sees. Ny aks: 15 Ko eens

Os Ps Gs Ty Ss Cyl, Vy Wy Xs Vp Se

Binary Digit = 0, l

Metal Digit = 0,a15 32350459 5) wOsrel

Hex Digit oO oe Pe Ss SOR) 6 SOs Os es “Ose Ds

E, F.

Arithmetic Operators = +, -, and, or and eor.

Relational Operators = <, <=, >, >=, =, /=-

Prefix Operators = inc, dec.

33

Identifier

Upper case

letter, /= X.

Upper case Letter =

Letter Keyword

Lower Case Letter 5

Number

) Hex Digit

B e yte a

Byte Variable

Number, <= SFF

O)—f{iiaracter} —©

34

Byte Variable

Identifier

a

Number <= SFFFF

Constant Identifier

Number,

$0 to SFFFF

Destination

(SD

Constant

Condition

Identifier

Relational
Operator

35

Declarations

“hi te Constant -

Word Constant

(=)

@ t=

a PETE Ss
C))

: Number

<= $100 (=) &%

a Constant

2 ae a
6 eee

Ge)

zeropage Number, <=FF age eet

Assembler Code Insert

36

Simple Statement

Destination

37

d
o
o
T
p
u
e

oseopusa

J
S
T
T

J
u
s
w
s

e
q
s

s
u
o
T
t

e
r
e

T
o
9
q

w
e
i
s
o
0
i
g

quswszeIS peanqzonaqs

Teqe]
euty

J
I
V
s
u
l

epop
AVsTquessy

q
u
o
u
s
j
e
q
g

o
T
d
u
t
s

IST]
Juoewsjeqs

4ST]
J
u
e
m
e
q
e
I
s

a
s
t
 qu

ou
s

e
S

(6)

ast]

ie

of

uowe

7e3S

See

eG,

AOFJTIUpyT

(22%)

A
S
T
I

q
u
e
w
s
3
e
3
s

as
tT

qu
ow
se
7e
IS

(
v
o
n
)

uot
IF puog

S
u
s
e

j
e
g

p
e
a
n
q
z
o
n
a
q
A
s

CHAPTER 3

THE LANGUAGE GRASSHOPPER: SEMANTICS AND TRANSLATION

In this chapter, the result of compiling GRASSHOPPER source

code is completely described. Thus, a description of GRASSHOPPER

semantics is given in terms of the MOS 6502 assembly language which is

the object language of the compiler. In addition, the task of the

GRASSHOPPER compiler is also described.

The object file must begin with a five byte header and be

formatted in a way which is suitable for a source file for the 0S-65D

assembler. The formats of the GRASSHOPPER source code and the

generated object code will be more fully discussed in Chapter 5.

The GRASSHOPPER program header statement contains the address

in core where the executable code will be placed. The header

statement:

program address;

is translated into three lines of object code:

*= address

JMP XS0000

XMO000 .BYTE $00

The line labelled XS0000 will be the first line of executable code

generated in the object program. The variable XM0000 is a system math

variable used in some mathematical expressions, but is never directly

referenced by the user. [Section 3.3].

The object code generated by the translation of the

38

39

declarations and the verb list of a GRASSHOPPER program will be

discussed in Sections 3.1 to 3.5. There are two lines of assembler

code added to the end of the object file:

JMP $2A51

-END

The jump instruction returns control to the Disk Operating System

(DOS), and " .END " is an assembler directive, indicating the end of

the assembler source code.

3.1 Translation Of The Declarations

With the exception of Condition identifiers, object code will

be generated for every identifier declared; allocating storage to

each variable and assigning a literal value to each constant

identifier. The results of compiling the Constant, Byte, Word,

Zeropage and Word declarations are summarized in Table 3.1.

All of the information required regarding a Condition variable

is stored in its type flag. The value of the type flag is calculated

using the number of the bit in the status register it represents, and

whether it is declared to be equal or not equal to that bit, [Section

2.1.5]. Thus, for this declaration:

condition NAME = bit#;

the type flag is calculated:

$c8 or bit# -> type flag;

and for

condition NAME /= bit#;

the type flag is calculated:

$CO or bit# -> type flag;

e
e

e
e

O000VS
=

A
N
V
N

3®
A
W
V
N

E
S
t
i
t
+
x

=%

,
O
T
T
H
H
,

F
L
A
G
’

¥=
AWNVN

*
(
,
O
T
I
T
A
H
,
)

=
(L$)

4
W
V
N

O
L
T
R
R
,

B
A
G
:

¥=
FTWVN

*
(
,
O
T
I
H
H
,
)

=
(
7
$
)
A
W
V
N

Z@$
A
L
A
G

I$
a
L
A
G

o$
A
L
A
’

¥=
T
W
V
N

*
(
Z
$
*
1
S
$
‘
0
$
)

=
(7$)

A
W
V
N

O
T
q
Q
e
T
r
e
A

OTS$t+I+x
=*%

A
V
U
U
V

Aerziy
x=

AINVN
*
(
O
1
$
)
A
W
V
N

A
e
i
i
e

e
T
Q
e
E
r
e
A

Z
+
1
T
U
W
V
N

=
Z
A
W
V
N

)
d
0
U
d
Z

a
3
e
g

o1297
0S$

=
T
H
W
V
N

ZTAWVN
‘THUWVN

‘OSS
78

a
8
e
d
o
i
o
z

(<=
}

w
t

O
O
O
V
S

=
A
W
V
N

‘
o
o
O
V
S

38®
A
W
V
N

addda$
(aOmM’

A
W
V
N

‘iddd4$
=

A
W
V
N

O
T
U
V
A

e
T
Q
e
T
I
e
A

P
A
O
M

00$
G
Y
O
M
*

A
W
V
N

‘
A
W
V
N

p1ioa

OOoOoVs
=

A
W
V
N

‘oOoOVS
328

A
W
V
N

d4$
F
L
A
G
’

A
W
V
N

‘da$
=

U
W
V
N

S
U
V
A

e
t
T
q
e
t
a
e
a

3
7
4
g

0
0
$

A
L
A
G
*

AWNVN
“
a
A
W
V
N

aahkq

Z
L
S
N
O
O

q
u
e
j
s
u
o
j

p
i
o
m

O
O
O
V
$

=
A
W
V
N

‘ooOvVs
=

A
N
V
N

T
L
S
N
O
O

q
u
e
q
j
s
u
o
g

3
3
4
g

ddi$
=

A
W
V
N

‘aa$
=

A
W
V
N

q
u
e
j
s
u
o
z
d

3
e

T
a

a
d
k
y

e
3
7
e
Q
G

g
n
d
3
n
o

o3pog9
g
n
d
u
j
t

o
p
o
9

a
d
k
y

a
d
k
y
,

a
2
9
0
f
q
o

J
o

e
T

d
u
e
x
q
g

a
o
a
n
o
s

j
o

e
t
T
d
u
e
x
g

u
o
t
T
}
z
e
r
e
y
p
o
o
q
g

S
u
o
T

e
A
e
T
O
O
d

A
O
T
J
F
I
U
V
S
P
]

JO
U
O
T
J
I
e
T
S
u
e
I
]
T

S
y
T

JO
A
r
e
u
U
N
S

*
T
°
€

A
T
A
V
L

41

3.2 Translation Of The Operands

3.2.1 Byte And Word Operands

The large variety of operands possible has been outlined in

Section 2.2.1. In Table 3.2, the translation of GRASSHOPPER operands

not used as destinations in sequence control statements, is

summarized. The following declarations are assumed:

constant CONST1 = $50, CONST2 = $9A40;

byte VAR8; word VARI16; array ARRAY($5);

zeropage at $50, ZEROPG;

TABLE 3.2: Summary Of The Translation Of Operands.

Source Code Object Code

Operand Operand Addressing Mode

$50 #$50 Immediate
TAY #°A Immediate

$9A40 #$9A40 Immediate
CONST1 #CONST1L Immediate

CONST2 lo #CONST2*$100/$100 Immediate
CONST2 hi #CONST2/$100 Immediate
CONST2 #CONST2 Immediate

loc CONST1 CONST1L Absolute

loc CONST2 CONST2 Absolute

loc $9A40 $9A40 Absolute
VAR8 VAR8 Absolute

VAR16 lo VAR16 Absolute

VAR16 hi VAR16+1 Absolute

ZEROPG lo ZEROPG Absolute

ZEROPG hi ZEROPG+1 Absolute

ARRAY, X ARRAY, X Absolute Indexed

ARRAY , Y ARRAY , Y Absolute Indexed

ind ZEROPG,X (ZEROPG, X) Indexed Indirect

ind ZEROPG,Y (ZEROPG) ,Y Indirect Indexed

ZEROPG,X ZEROPG, X Zero Page Indexed

ZEROPG,Y ZEROPG ,Y Zero Page Indexed

42

Where the operand is the destination of a GOTO or GOSUB

statement, the addressing mode is always absolute, thus:

Source Code Object Code

gosub CONST2; JSR CONST2

gosub LABEL; JSR LABEL

goto $9A40; JMP $9A40

3.2.2 Registers As Operands

The use of the accumulator and the X and Y index registers has

been briefly discussed in Sections 2.1.6 and 2.2. The accumulator

will be involved in most data-manipulations even if it is not

specifically referenced in the GRASSHOPPER code, and the index

registers are used when any form of indexed addressing is required.

This section deals with the case where a register has been used as an

explicit operand in a GRASSHOPPER statement. In this case, the

assembler code instruction mst be choosen according to which register

is to be operated on, and on what operation is to be performed.

The MCS6500 assembler language has many register specific

instructions. Nine of these instructions specify an action and a

register and require an operand field. For example:

LDA #$55

LDX #$55

LDY #$55

instruct that the accumulator, the X and the Y register, respectively,

be loaded with the value in the operand field, $55. These

instructions may be divided up into three groups:

43

1/ The comparison instructions: CMP; CPX; CPY.

2/ The load register instructions: LDA; LDX; LDY.

3/ The store register instructions: STA; STX; STY.

There are four additional instructions which require no

operand field since the operand is implied in the instruction. These

instructions are used to transfer between the accumulator and one of

the index registers:

1l/ a transfer from the accumulator to an index register:

TAX; TAY.

2/ a transfer from an index register to the accumulator:

TXA; TYA-

The choice of instruction will be more thoroughly discussed in

Sections 3.3 and 4.2.2.

44

3.3 The Data Manipulation Statements

The translation of the three data-manipulation statements:

the prefix operator statement; the assignment statement; and the

comparison statement; will be described in this section. The

relational expression is only used as the condition portion of the IF

construct, so discussion of the translation of this expression will be

reserved for Section 3.5.1.

Translation of these statements is complicated by two factors.

The first is the use of registers as explicit operands. As was

mentioned in Section 3.2.2, there are thirteen register specific

instructions which must be used in these cases.

The second problem is that there are many cases where an

operand’s addressing mode is illegal for a desired assembler code

instruction. Table 3.3 summarizes the illegal addressing modes which

had to be dealt with when compiling the data-manipulation statements.

Each column is labelled with the mnemonic for an assembler code

instruction, and each row with a type of operand. An: -"X"" “in ‘the

table represents an illegal addressing mode, where alternate code must

be generated.

45

TABLE 3.3: Illegal Addressing Modes For Assembler Code

Instructions.
a

INC, CPX,

Operand DEC CPY LDX LDY STX STY

ARRAY, X xX x x x

ARRAY, Y Xx Xx x x X

ZEROPG, X xX xX xX

ZEROPG, Y x xX x x

ind ZEROPG,X x Xx Xx x xX xX

ind ZEROPG,Y xX xX x x xX : xX

i

In the tables that follow, the identifier GENERAL will

represent all non-register operands whose addressing modes are legal

for the assembler code instruction desired. The identifier SPECIAL

will represent all non-register operands whose addressing modes

require that alternative object code be generated.

There are several cases, in the translation of

data-manipulation statements, where a temporary holding variable is

needed. At the beginning of this chapter it was mentioned that space

is allocated to a system math variable, XMO0000. This variable will

never be referenced by the user when writing a GRASSHOPPER source

program, but will be used in the object code under certain

circumstances. Examples of its use may be seen in Tables 3.7 and 3.8.

3.3.1 The Prefix Operator Statements

Statements in which prefix operators are used are of the

following form:

46

inc Byte Variable;

dec Byte Variable;

The results of compiling these statements depend on the nature of the

operands and are summarized in Table 3.4.

TABLE 3.4: Translation Of The Prefix Operations

Translation of Translation of

Operand inc Operand dec Operand

A CLC SEC
ADC #1 SBC #1

xX INX DEX

Y INY DEY

GENERAL INC GENERAL DEC GENERAL

SPECIAL LDA SPECIAL LDA SPECIAL
CLC SEC
ADC #1 SBC #1
STA SPECIAL STA SPECIAL

3.3.2 The Assignment Statements

The results of compiling simple assignment statements, where

there is no calculation performed, have been summarized in Table 3.5.

In this table, each row is labelled with the operand being assigned,

and each column with the operand being assigned to. By examination of

this table, and of Table 3.3, it can be seen that the following

translation will occur:

Source Code Object Code

A -> X; TAX

ARRAY1,X -> Y3 LDY ARRAY1,X

ARRAY2,X -—-> X; LDA ARRAY2,X
TAX

47

AVI XVI

T
I
V
I
O
d
d
S

V
a
t

T
V
1
O
d
d
s

V
a
l

T
V
L
O
d
d
S

C
I
V
Y
A
N
A
D

V
I
S

T
I
V
Y
a
N
a
D

V
a
l

T
T
I
V
Y
A
N
A
D

A
C
T

T
I
V
Y
U
A
N
A
D

X
C

T
I
V
Y
A
N
A
D

V
A
T

T
T
V
Y
a
A
N
A
D

T
V
I
0
d
a
d
s

V
I
S

X
V
I

:
V
A
L

@
I
V
U
A
N
A
D

A
L
S

V
A
L

V
A
L

A

T
V
l
O
0
d
d
S

V
I
S

A
V
L

V
X
I

@
T
I
V
Y
A
N
A
D

X
L
S

V
X
.

V
X
L

xX

T
I
V
U
A
N
A
D

V
I
S

A
V
L

X
V
I

Vv

TVlO0GadS
<-

T
I
V
U
A
N
A
D

<-
a

es
Af ae oe

w
i
o
d

*
s
i
l
o
q
i
s
t
d
o
y

o
g

APW
s
p
u
e
i
s
o
d
o

y
I
O
G

I
O

29UO
Z
F
I
Z
U
M

‘
L
I
N
S
A
Y

<-
W
A
A
L

:
}
J
u
e
u
s
3
z
e
3
S

J
u
e
w
W
U
s
T
S
S
y
Y

e
u
,

JO
V
o
O
T
I
e
T
S
s
u
e
A
L

7FyUL
+
S
°
€

A
I
A
V
I

48

The results of compiling assignment statements which include

calculations:

TERM OPERATOR TERM => RESULT;

have been summarized in Tables 3.6 and 3.7. Table 3.6 summarizes the

simplest case where none of the operands are registers.

TABLE 3.6: The Translation Of The Assignment Statement:
TERM OPERATOR TERM -> RESULT

Where None Of The Operands Is A Register.

Assignment Statement Object Code

OPERAND1 + OPERAND2 -> RESULT CLC
LDA OPERAND1
ADC OPERAND2
STA RESULT

OPERAND 1 - OPERAND2 -> RESULT SEC

LDA OPERAND1
SBC OPERAND2

STA RESULT

OPERAND 1 and OPERAND2 -> RESULT LDA OPERAD1
AND OPERAND2

STA RESULT

OPERAND 1 or OPERAND2 => RESULT LDA OPERAND1L
ORA OPERAND2
STA RESULT

OPERAND 1 exor OPERAND2 -> RESULT LDA OPERAND1
EOR OPERAND2
STA RESULT

Table 3.7 summarizes the translation of the calculation part

of the assignment statement when one of the terms is a register. EE

is not legal in this implementation of GRASSHOPPER to have registers

for both terms. The Boolean and the addition operations are all

commutative, so that the same code may be produced whether the

49

register is the first or the second term. Only the addition operation

is illustrated in Table 3.7, but the Boolean operations involving

registers are compiled similarly. Since the assembler code

instruction mst operate on the accumulator the value in the register

operand is first transferred into the accumulator. The non-register

operand is is then added to the accumulator.

The subtraction operation is not commtative, so that the

first term in the statement must be loaded into the accumulator then

the second term mst be subtracted from it. When the second term is a

register it is first stored in the temporary variable XM0000 so that

this subtraction may take place. In Table 3.7 subtraction with the

accumulator and with the X register have _ been illustrated.

Subtraction with the Y register is compiled similarly.

The translation of the actual assignment part of the

assignment statement corresponds to the first row in Table 3.5, since

the result of any of the boolean or arithmetic operations will be

stored in the accumulator. Thus, by examining Tables 3.5, 3.6 and

3.7, it can be seen that the following translation will occur:

Source Code Object Code

X and SFO -> Y; TXA

AND #SFO
TAY

TABLE 3.7: The Translation Of The Calculation Part Of

The Assignment Statement:
TERM OPERATOR TERM <-> RESULT;

Where The Terms Include Registers.

Assignment Statements Object Code

A + NAME -> RESULT CLC
NAME + A -> RESULT ADC NAME

x + NAME -> RESULT CLC
NAME + x -> RESULT TXA

ADC NAME

Y - NAME -> RESULT CLC
NAME + Y -> RESULT TYA

ADC NAME

A - NAME -> RESULT SEC
SBC NAME

NAME - A -> RESULT SEC
STA XM0000
LDA NAME
SBC XM0000

x - NAME -> RESULT TXA
SEC
SBC NAME

NAME ~ X -> RESULT SEC
STX XM0000
LDA NAME
SBC XMO000

3.3.3 The Comparison Statement

The comparison statement is of the form:

TERM :; TERM;

It compares two terms by subtracting the second term from the first

mp

term without storing the result. The purpose of this statement is to

set the Carry, Zero and Negative bits of the processor status register

which were described in Section 2.1.5. The translation of this

statement is summarized in Table 3.8, note that the order of the terms

must be preserved in the translation.

TABLE 3.8: Object Code Emitted For The Comparison Statement

TERM] : TERM2;

TERM1 : TERM2 Instructions

GENERAL1 GENERAL2 LDA GENERAL1

CMP GENERAL2

A GENERAL CMP GENERAL

GENERAL A STA XMO000
LDA GENERAL

CMP XM0000

xX GENERAL CPX GENERAL

xX SPECIAL TXA

CMP SPECIAL

GENERAL xX STX XM0000

LDA GENERAL

CMP XM0000

34 GENERAL CPY GENERAL

Y SPECIAL TYA

CMP SPECIAL

GENERAL 36 STY XM0000

LDA GENERAL

CMP _XM0000

52

3.4 Line Labels

There are two kinds of line labels which may appear in the

object code. The statement line label which originates in the

GRASSHOPPER source code is described in Section 2.5. When it is

encountered it is entered into the label field of a line of object

code. It may appear in an output line containing an assembler code

instruction, for example:

LABEL, A : NAME;

will be compiled to:

LABEL CMP NAME

Or it may appear as an assembler code directive, for example:

LABEL;

is a label on an empty statement and will be compiled to:

LABEL =x

The second kind of label is the system line label which is

generated by the compiler, usually in the translation of the sequence

control constructs. System line labels consist of: the letter "X";

a letter which indicates what construct generated the label; and a

four place hexidecimal number which gives the sequence in which the

labels were generated. The generation and use of these labels will be

more thoroughly discussed in Section 7.2. The second character

identifies the kind of label according to the following

classifications:

53

TABLE 3.9: Summary Of System Line Labels.

Identifying Class Class
Letter Name Description

S XSTART Program Start
M XMATH System Math Variable

L XLOOP Beginning Of A Loop
E XLOPEX End of a Loop

F XIF Steps in an If Construct

G XEND IF End of an If Construct
C XCASE Steps in a Case Construct

D XENDCS End of a Case Construct

In this report, system line labels which appear in examples

will be represented by their class name. Sequence numbers will only

be used when more then one label of a class appears in the same

example.

3.5 Sequence Control Statements and Constructs

The four simple sequence control statements and the three

sequence control constructs have been described in Section 2.3. The

former are very simply compiled and have been summarized in Table

3.10. The EXITLOOP statement will also be illustrated in the

discussion of the LOOP construct.

TABLE 3.10: The Translation Of The Simple

Sequence Control Statements.

Statement Object Code Generated

goto LABEL; JMP LABEL

gosub LABEL; JSR LABEL

return; RTS

exitloop; JMP XLOPEX

x=
T
A
I
X

ZT4A1X
SOE T

a
1
x

O
d
a

aa
dwo

-<----
VV

V
a
l

u
e
y
d

ga
=>

VV
JF

AI
X

OO
€

al
x

O
9
4

A
I
X
O
0
8

u2
eq
u2

N
A
H
L
I
S
S
H
I
N

FF

qd

dn
o

AIX
O
9
9

u
e
y
2

‘IvndagN
FFT

VV
Vail

ueyui
aad

<
WV

SF

d1
IX

O
0
9

aa
d

d
W
o

J
I
X

O
0
8

w
e
q
7

N
A
H
L
S
S
H
I
N

FF

V
V

V
a
l

us
yq
d

ga

=<

V
V

SF

d1IX Sod

ad

dwWo

dIX

Sod

U29qd

NAHLSSAT

FF

VV

Val

uesqd

qi

>

VV

FF

54

A
L
X

O
4
G

aa

dW
o

a
x

O
9
9

u
a
y
2

‘I
vn
da
N

FF

VV

V
a
l

u
s
q
2

ag

=/

VV

JF

d
I
X

A
N
G

aa

d
W
o

d
I
X

A
N
d

u
o
q
d

I
v
n
d
a

FF

V
V

V
a
t

u
o
q
?

qa

=
V
V

FF

n
e
n

e
e

a
n
 e
n
e

nnn n
n
 n
n

S
R
N
R

R
R
S

a
p
o
9

e
T
q
e
T
A
e
A

UOTITFpUuoOsD
a
p
o
g

u
o
t
s
s
e
i
a
d
x
q

[
T
e
u
o
t
T
I
e
T
I
O
Y

a99fqo
q09efq0

T
q
a
:
v
v

7Kq
p
o
p
o
d
o
e
i
g

S
u
y
u
n
s
s
y

“
S
a
T
q
e
T
A
e
A

N
O
I
L
I
G
N
O
D

p
u
e

s
u
o
T
s
s
s
i
d
x
y

TeuoTIeTeyY
B
u
y
s

suozatpuog
AL

JO
voFjetsuerzy

euL
F1T°€

ATAVI

55

3.5.1 Translation Of The IF Construct

The format of this construct has been described in Section

2.3.1. The result of compiling the initial phrase of the construct:

if condition then

will depend on:

1/ whether the condition is given as a Condition

variable, or as a relational expression. In the latter case

comparison code will be generated;

2/ what the condition is. In all cases a branching

instruction will be generated.

Table 3.11 compares the object code code generated when

relational expressions and Condition variables are used as_ the

condition. Note that there is no equivalent using Condition variables

to the relational expression AA <= BB.

In the relational expression, the occurrence of a register as

one of the terms is handled differently than in the comparison

Statement. The two terms are compared in the same way as was

summarized in Table 3.8, except that they are always compared as if

the register was the first term. The order in which the terms

actually occurred will be reflected in the branch instruction which is

generated. For example, the following two phrases:

if A < BB then... if BB < A then...

will be compiled to the following segments of code:

CMP GENERAL CMP GENERAL

BCS XIF BCC XIF

56

Thus, the second phrase is compiled as if it had been stated:

if A >= BB then...

The translation of the IF construct, without the comparison

and branch instructions, has been summarized in Table 3.12.

TABLE 3.12: Summary Of The Translation Of The IF Construct

Source Code Phrase Object Code Generated

if condition then Comparison Code
Branch to XIF

orif condition then JMP XENDIF
XIF =* ~

Comparison Code
Branch to XIF

else JMP XENDIF

XIF =*

endif XENDIF =*

This table can be clarified with two examples, one of the

simplest form of the IF construct:

Source Code Object Code

if xX = $FF then CPX #SFF

BNE XIF

inc loc $2A67 INC $2A67
endif XIF =*

XENDIF =*

and a second example with all the possible elements of the IF

construct:

Source Code Object Code

if X < $3F then CPX #S$3F

: BCS XIF1

gosub FIRSTQUARTER JSR FIRSTQ
orif X < $7F then JMP XENDIF

57

XIFl =*

CPX #S$7F
BCS XIF2

gosub SECONDQUARTER JSR SECOND

orif X <= $FF then © JMP XENDIF
XIF2 =

CPX #SFF

BEQ XIF3
BCX XIF4

XIF3 =%

gosub LASTHALF JSR LASTHA
else JMP XENDIF

XIF4 =*%

goto CRASH JMP CRASH
endif XENDIF =*

3.5.2 Translation Of The CASE Construct

The format of this construct has been discussed in Section

2.3.2. The selector is first loaded into the accumulator, then each

guard encountered is compared to the accumulator. The translation of

the remainder of the construct is best described using an example:

Source Code Object Code

case DEVICE LDA DEVICE
of CRT: CMP #CRT

BNE XCASEL
gosub CATHODE JSR CATHOD

of PRINT1, PRINT2: — JMP XENDCS
XCASE1 =*

CMP #PRINT1
BEQ XCASE2
CMP #PRINT2
BNE XCASE3

XCASE2 =*
gosub PRINTERS JSR PRINTE

other JMP XENDCS

XCASE3 =*
goto BADOUT JMP BADOUT

endcase XENDCS =*

In this example, if there had been no OTHER portion, then the’ XCASE3

=* label would have appeared immediately before the XENDCS =* label.

58

3.5.3 Translation Of The Loop Construct

The format of this construct has been described in Section

2.3.3. Its translation is far simpler then that of the constructs

previously described, and may be illustrated by showing the

translation of the example given in Section 2.3.3:

Source Code Object Code

loop XLOOP =*

if CURRENT = LENGTH then LDA CURRNT

CMP LENGTH

BNE XIF

exitloop JMP XLOPEX

endif XIF =%

XENDIF =*

gosub TRANSFER; JSR TRANSF

endloop JMP XLOOP
XLOPEX =*

In the case of nested constructs, the exitloop will refer to the

innermost loop.

3.6 Summary

Figure 2.1, given at the end of Chapter 2 is an example of a

GRASSHOPPER program which has been compiled, assembled and

successfully run. The compiled version is shown in Figure 3.1,

illustrating the assembler source code which is actually generated.

In this figure, comments have been inserted which describe most of the

original GRASSHOPPER code.

59

FIGURE 3.1: Translation Of Figure 2.1

10 *= $4000
20 JMP XS0000

30; ’PROGRAM’ GRSHOP $4000:

40 XMOO00 .BYTE 00

50; *“CONSTANT’ DOS = $2A51, INWEKO = $2340,

60; OUTSTR = $2D73, SEEKA = $26BC,

70; LDREAD = $2B1A, SAVE = $2C3A,

80; CR = SOD, LF = SOA, TOTAL = $02;

90 DOS = $2A51

100 INWEKO = $2340
110 OUTSTR = $2D73

120 SEEKA = $26BC

130 LDREAD = $2Bl1A

140 SAVE = $2C3A

150 CR = $OD
160 LF = SOA

170 TOTAL = $02

180; BYTE’ DSRNO “’AT’ $265E, DSRLEN ’AT’ $265F,

190; SAVX;
200 DSRNO = $265E
210 DSRLEN = $265F
220 SAVX -BYTE 00
230; ” ARRAY’ ADDRESS() = ($91, $9D, $A9),

240; TRACK () = ($16, $18, $20);
250 ADDRES =*

260 -BYTE $91

270 -BYTE $9D

280 «BYTE $A9

290 TRACK =*

300 -BYTE $16

310 -BYTE $18

320 “BYTE $20

330; “WORD ’ ZADDRESS ‘AT’ SFF;

340 ZADDRE = SFF

350; “BEGIN’ $00 -> SAVX;

360 XSO000 =*

370 LDA #$00
380 STA SAVX

390; ASK, “GOSUB’ OUTSTR;

400 ASK JSR OUTSTR

410 .BYTE CR,LF,’1/LOAD 2/UPDATE ?’,$00
420; “GOSUB’ INWEKO;

430 JSR INWEKO

440; ‘CASE’ A
450; SOR — $s “LOOP” ! retrieve !

460;

470;
480;
490 cMp #$1
500 BNE XC0002
510 XLO004 =*
520 JSR NEXT
530 JSR LDREAD
540 JMP XLO004

550 XE0003 =*
560;
570;
580;

590;
600;
610 JMP XDOOOL

620 xcO002 =*
630 CMP #$2

640 BNE XC0005

650 XLO007 =*
660 JSR NEXT

670 LDA #$0C
680 STA DSRLEN
690 JSR SAVE

700 JMP XL0007

710 XEOQ006 =*
720%

7303
740 JMP XDOOO01
750 xcO005 =*
760 JMP ASK

770 xDOOO1 =*
780; NEXT, SAVX -> X;
790 NEXT LDX SAVX
800;

810;

820;

830;
840;

850;

860;
870;

880;

890 CPX #TOTAL
900 BNE XFO009

910 JMP DOS
920 JMP XG0008
930 XFOQ009 =*
940 LDA ADDRES,X

60

“GOSUB’ NEXT;
’GOSUB’ LDREAD;

“ENDLOOP’

“OF = $232 “LOGR: ! save !
’GOSUB’ NEXT;

$OC -> DSRLEN;

“GOSUB’ SAVE;

“ENDLOOP’

“OTHER’ “GOTO” ASK;

“ ENDCASE’

‘IF’ X = TOTAL “THEN’ ‘GOTO’ DOS
‘ELSE’

ADDRESS,X -> ZADDRESS ‘HI’;
$00 -> ZADDRESS ’LO’;
$01 => DSRNO;
X + $1 -> SAVX;
TRACK,X -> A;
“GOSUB’ SEEKA;

‘ENDIF’

950
960
970
980

990
1000

1010

1020
1030
1040

1050
1060 XGO0008
1070;

1080;

1090

1100
1110

STA
LDA
STA

LDA

STA

CLC

ADC
STA

LDA
JSR
=k

RTS

JMP
- END

61

ZADDRE+1

#$00
ZADDRE

#$01
DSRNO

#$1
SAVX

TRACK ,X
SEEKA

’RETURN’ ;

“END’.

$2A51

CHAPTER 4

A GRASSHOPPER COMPILER

The GRASSHOPPER compiler is written mostly in the assembly

language of the MOS 6502 microcomputer, with two portions: SRCMGR

[Section 5.3] and FATAL [Section 4.5] written in GRASSHOPPER.

‘The lexical analysis of a GRASSHOPPER source program is

supervised by the routine, ADVANC which will be described in Chapter

6, and which is based on the basic scan used in Halstead’s Pilot

compiler, [Halstead 1974, p. 36]. The source code is treated as a

series of operands and symbols which can be examined as groupings of

symbol-operand-symbol triplets. The purpose of ADVANC is to obtain

from the source code the next symbol-operand-symbol triplet and place

representative tokens in the three Byte variables: CURSYM, CURITM and

NXTSYM.

Symbols which may be returned in CURSYM and NXISYM may be

grouped into three categories:

1/ single characters from the ASCII character set. The only

such characters to be returned in CURSYM and NXTSYM are those in

the general category in Table 6.2;

2/ arithmetic, relational or comparison operators as

described in Table 6.5;

3/ or the tokens associated with the key words used in

Grasshopper. These tokens are listed in Table 4.1.

62

TABLE 4.1: The Key Words Used In GRASSHOPPER,
And Their Tokens

Key Word Token Identifier Token

and LOGAND $8D

array ARRAY $B8
at AT ; SA8

begin BEGIN $A2

byte VAR8 $B6
case CASE $D3

condition CONDI $co

constant CONST $B2

dec KEYDEC $91

else ELSE SE2

end END _$FF
endcase ENDCA $SF3
endif ENDIF SFl

endloop ENDLOP $F2
exitloop EXITLP $D5
exor EXOR $8F

gosub GOSUB $D6
goto GOTO SD1
hi HI $A6

if IF $D2

inc KEY INC $90

ind IND $A9
lo LO SA5
loc LOC $A7

loop LOOP $D4

of OF SE1

or OR $8E

orif ORIF SE4
other OTHER $E3
program PROGRM $A0O
return RETURN $D7

then THEN $DO

word VAR16 SBA

zeropage ZEROPG $B4

The token placed in CURITM identifies the next operand type,

in almost all cases additional information is stored in other

variables to describe and identify the operand. This is summarized in

Table 6.1, if there is no operand, CURITM is zero.

64

Syntactic and Semantic analysis are done in the translating

routines supervised by: HEADER; DCLARE and VRBLST, which will be

described in Sections 4.1, 4.3 and 4s. The source code is' scanned

by repeatedly calling ADVANC and analyzing the current symbol-operand-

symbol triplet. There is some error detection, covering syntax

errors, nesting errors and operand type errors, this is the subject of

Section 4.5.

As this scan proceeds, the translating routines generate

object code using the format and routines discussed in Chapter 7. The

operand field is generated by the routines outlined in Section 4.2.

The operator field of the object code, which was briefly discussed in

Section 7.1.2, will always contain either an opcode mnemonic, or an

assembler directive. All possible operators are contained in the

array OPLIST. The translating routines to be discussed in Sections

4.3 and 4.4 mst set the operator field by placing the displacement of

the desired operator in OPLIST into the byte variable OPDISP.

While efficiency of object code was an objective when writing

the compiler, separate optimization of object code has not been

attempted in this implementation.

4.1 Overview Of The GRASSHOPPER Compiler

The whole process of compilation is supervised by the routine

DRIVER, which may be considered to be the ultimate root of all the

subroutine maps shown in this report.

65

Figure 4.1: Subroutine Map Of The Translator

DRIVER

PRIME : FINISH

DRIVER activates PRIME at the beginning of a translation to:

initialize the disk 1/0 buffers [section 5.1]; reserve the first five

bytes of the object file for the header described in Table 5.2; to

set all variables in the data space used by the compiler to zero; and

to enter the key words into the symbol tables.

The array, KEYLST, contains all the key words used, preceded

by their tokens. The contents of this array are first read into

STBUF1 then entered into TABLES using the routine INKEY discussed in

section 6.2.2. The keys are not transferred directly from KEYLST to

TABLES because INKEY uses the same table building routines as INNAME

and these routines expect to find each new item in the statement

buffer.

HEADER simply reads the program header statement and generates

the three lines of object code described at the beginning of Chapter

3. If subroutine capabilities are extended in GRASSHOPPER the routine

HEADER will become more extensive.

66

DCLARE compiles the variable and constant declarations and

will be more thoroughly discussed in section 4.3. All identifier

Names are entered into the symbol table under the supervision of this

routine.

After DCLARE has been executed DRIVER sets the variable DCLFLG

to 1 so that subsequently the symbol tables may be referenced but not

altered. [Section 6.2]

VRBLST compiles the executable body of the program, hereafter

refered to as the verb list. This will be further discussed in

section 4.4.

After the program has been compiled, DRIVER calls the routine

FINISH to complete the object program and to finish transferring it to

the disk file.

A jump to the Disk Operating System (DOS) is placed at the end

of the object code, followed by the assembler directive " .END ¥

FINISH then completes the transfer of the object disk 1/0 buffer,

[section 5.1], and inserts the header described in Table 5.2 at the

Gicinnins of the object file, [section 5.4].

After FINISH has been executed the file in OBJECT will be in a

form suitable for processing as source by the assembler/editor.

DRIVER then returns control to the operating system.

67

4.2 Translating The Operand

The task of translating an operand has, with two exceptions,

been delegated to the six routines which will be discussed in Sections

4.2.1 and 4.2.2. Which of these routines will be called will depend

on the kind of operand which is legal for the context.

The first exception is a character string used to initialize

an array in the declarations, and in this case, the routine INSTRG is

called directly by the routine which translates array declarations.

The second exception is the case of a conditional identifier being

used as the condition in an IF statement. This operand is translated

in the routine STIF, since there is no other context, outside of the

declarations, where a conditional identifier is legal.

Examination of Table 6.1 will show that for several possible

values of CURIIM which may be returned by ADVANC, there will be

information on the operand stored in other variables. The most

important of these is the Byte variable NAMFLG. When an identifier is

read by RDNAME, its type flag will be put into NAMFLG, the different

possible values of which are summarized in Table 4.2. Also, when the

operand is the accumulator, or the X or Y register, then the ASCII

code value for "A", "X" or "Y" respectively will have been put into

NAMFLG by SRCHNM, [Section 6.2.1].

68

TABLE 4.2: Summary Of The Possible Values Of NAMFLG.

NAMFLG Actual Value Corresponding Type of Operand

Of NAMFLG CURIIM

sg $41 ACC Accumulator

2b epee be: $58,$59 REG Index Register

CONST1 $B2 NAME Byte Constant

CONST2 $B3 NAME Word Constant

ZEROPG $B4 NAME Zero Page Variable

VAR8 $B6 NAME Byte Variable

ARRAY $B8 NAME Array Variable

VAR16 SBA NAME Word Variable

CO to $CF NAME Condition Variables

4.2.1 Byte and Word Operands

There are five routines which translate the non-register

operands discussed in Section 3.2.1. Each of these routines will

return $FF in the accumulator if an appropriate operand was found and

has been translated, and returns $00 otherwise. The source code

Operands which can be translated, and the required results of

translation have already been summarized in Table 3.2.

OPBILT is called when a Byte constant is expected, in every

case the addressing mode will be immediate. OPBIVR is called when a

Byte variable is expected, and will translate legal operands in all

the addressing modes, other then immediate, which are shown in Table

3.2. OPBYT1 is called when a Byte variable or constant is expected

and corresponds to the Term syntax graph given in Section 2.6.

69

OPB2LT is called when the expected operand is a Word constant

identifier, or a literal. OPJMP is called when the destination of a

GOTO or GOSUB statement is expected, and will except the same kinds of

operands as OPB2LT, as well as a statement label.

4.2.2 Registers As Operands

The routine QPREG is called when the operand may be the

accumulator, or the X or Y register. The MCS6500 assembler language,

which is the language of the object code, has many register specific

instructions, thirteen of these have been outlined in “Section 3.2.2.

The mnemonics for related instructions have been arranged together in

OPLIST so that they always occur with the accumulator specific

instruction first and the Y register specific instruction last.

The task of OPREG is to determine whether the operand is one

of the three registers, and if it is, to store a value in the Byte

variable, REGFLG, which can be used to choose the appropriate assembly

code instruction from OPLIST. The accumulator is set to zero if a

register is found, and to the value of CURITIM if not.

procedure OPREG;

begin case CURIIM

of REG : if NAMFLG = X then $4 -> REGFLG

else $8 -> REGFLG endif $0 -> A;

of ACC : $0 -> REGFLG; $0 -> A;

other CURIIM -> A;

endcase;

end

70

The thirteen register specific instructions are broadly

divided into two groups: those which require an operand field; and

those which do not.

The first group consists of: the comparison instructions;

the load register instructions; and, the store register instructions.

A specific instruction within one of these groups can be chosen using

the register mapping routine, REGMP1, which will expect to find the

OPLIST displacement for the first of one of these series in the

accumulator. REGMP1 will store a value in OPDISP using the following

function:

A + REGFLG -> OPDISP;

Thus, if before REGMPl was called the accumulator contained the

displacement for " LDA ", and REGFLG contained the value $4, then

OPDISP will be set to the displacement for " LDX " in OPLIST. [Section

3.2.2)

The second group consists of transfers: from the accumulator

to an index register; and from an index register to the accumulator.

When the corresponding register mapping routine, REGMP2, is called, it

will expect to find the displacement minus four of either " TAX " or

" TXA " in the accumulator. If REGFLG = $0, the operand is the

accumulator and there is no action. Otherwise the following code is

executed:

A + REGFLG -> OPDISP; gosub PUTLIN;

Thus REGMP2 will emit a line of object code, except in the trivial

case of a transfer from the accumulator to to the accumulator.

71

4.3 Compilation Of The Declarations

The routines DCLARE and DCLST together supervise the process

of compiling the declarations. DCLARE supervises the compilation of

each declaration statement, DCLST supervises the compilation of each

new identifier in a declaration statement. The subroutine map for

this process is shown in Figure 4.2.

Figure 4.2: Subroutine Map For The Translation

Of The Declarations

ST OPBILT

DCLCON DCLCOP DCLV8 DCLARR DCLV16 DCLZER

The syntax graph for the declarations, given in Section 2.6,

shows an initial seven way choice between the six kinds. of

declarations statements and the assembler code insert. The six

routines which may be indirectly called from DCLST correspond to the

first six of these choices and will do the actual compilation. The

assembler code insert is detected by DCLARE, resulting in a call te

INSERT, which transfers the insert directly to the object program.

72

Throughout this phase of the compilation there is a _ short

routine, ADVPRO, used as a stepping stone to ADVANC:

procedure ADVPRO;

begin

$01 -> DCLFLG; gosub ADVANC; $00 -> DCLFLG;

end

ADVPRO is used when the expected operand is a numeric literal or a

pre-declared constant, used, for example, to assign a value to a new

constant. This is necessary because if DCLFLG is pai: ADVANC will

attempt to enter any identifier into the symbol tables instead of

reading from them.

The token associated with the key word which identifies each

type of declaration statement serves two additional purposes. ris

stored in the byte variable TYPFLG, to be used either as the type flag

stored with each identifier, [Section 6.2], or as a factor in the

calculation of this value. Secondly, the four least significant bits

are used as a displacement in the array DCLBFl which contains the

addresses of the routines required to specifically translate each type

of declaration statement, and in the array DCLBF2 which contains the

displacements in OPLIST of the assembler directives used for part or

all of the compilation of each declaration statement type. For

example, the value of the token for ARRAY is $B8, the address of

DCLARR which translates array declarations is located in DCLBFl at

displacements 8 and 9. DCLBF2(8) contains the displacement in OPLIST

of oe uy

73

DCLARE examines the beginning of each statement to determine

whether it is:

1/ an assembler code insert, - in which case INSERT is called;

2/ the beginning of the verb list, in which case control is

returned to DRIVER;

3/ a GRASSHOPPER declaration statement. The address of the

specific translating routine required is read from DCLBFl into the

word variable REST, to be used for an indirect jump to that routine

by DCLST. The variable OPDISP is set from the array DCLBF2.

TYPFLG will be set equal to the token value of the identifying key

word, for example $B8 for the translation of an Array declaration

statement. The routine DCLST will then be called.

4/ an illegal statement for the declaration section, in which

case an error stop is issued.

procedure DCLARE;

condition SUCCESS /= $1;

begin

loop

if NXTSYM = BEGIN then return ! end of the declarations !

orif NXTISYM = "[{" then ! assembler code insert !

gosub INSERT; "3" => NXTSYM; gosub ADVANC

else ! new declaration statement !

NXTSYM -> TYPFLG; NXTSYM and SOF -> Y;

DCLBF2,Y -> OPDISP;

DCLBF1,Y -> REST lo; ines; DCLBF1,Y -> REST hi;

74

case NXTSYM

of CONDI : ! Condition Variables !

of ZEROPG : ! Zeropage Variables !

gosub ADVANC; gosub ADVPRO;

if (CURSYM = AT) then ©

gosub OPBILT;

if SUCCESS and (CURITM /= STRING)

then gosub SETIIM

else goto FATAL($08) endif

else goto FATAL($13) endif

other ! Array, Constant, Byte or Word !

if (NXTSYM and $FO) = $BO

then gosub SETIIM

else goto FATAL(S$17) endif

endcase ;

gosub DCLST

endloop

DCLST sets each newly declared identifier as a line label then

calls the routine which is specific for the kind of declaration

statement in which it occurred. The address of this routine is stored

in the word variable REST. When the end of the declaration statement

is reached, control is returned to DCLARE.

i

procedure DCLST;

begin

"i" -> NXTSYM;
! loop for each identifier declared !

loop

$00 -> ITMBFY; gosub ADVANC;

if CURSYM = ";" then return ! end declaration statement !

orif (CURSYM = ",") and (CURITM = NAME) then

! set the new identifier as a line label, then

call the routine specific to that data type !

gosub STNMLB; gosub loc REST

else ! syntax error in declaration statement !

gosub FATAL($11)

endif

endloop

end

76

4.4 Compilation Of The Statement List

The brief routine, VRBLST initiates the compilation of the

entire verb list of a GRASSHOPPER program. Using the routine, XPLLAB,

described in Section 7.2, VRBLST emits the line:

xs0000 =*

to the object file, thereby labeling the beginning of the executable

code.

procedure VRBLST;

begin

XSTART -> A; gosub XPLLAB;

"3" => NXTSYM; gosub ADVANC; goto STMLST;

end;

There are three routines which supervise the rest of the

compilation process, these are: STMLST, STMNXT and STDELM. Control

passes between these according to what area of the Statement List

syntax graph a compilation is in, [Section 2.6]. Thus, SIMLST is

called when entering the statement list syntax graph; STMNXT is

called when the next statement in a statement list is required; and

STDELM is called when an intermediate or terminating statement

delimiter is expected.

STMLST supervises the compilation o£ the simple

statements; the assembler code inserts; and the first phase of the

structured statements.

77

procedure STMLST;

begin

case statement

of empty statement : goto STDELM;

of simple statement : translate; _ goto STDELM;

of assembler code insert : transfer; goto STMNXT;

of structured statement : translate up to where a

new statement list is expected; goto STMLST;

other error, unidentified statement, goto FATAL ($18)

endcase

end ;

STMNXT corresponds to a continuation of the cycle of the

Statement List syntax graph. When STMNXT is called, CURSYM is a

statement terminating delimiter, and may be followed by a statement

label.

procedure STMNXT;

begin

if CURITIM = LINLAB then place label in line label field of

current line of object code;

if of form " LABEL; " then

generate object code " LABEL =* "; goto STDELM

orif of the form " LABEL,... " then

continue scan... goto STMLST

else syntax error..-goto FATAL($19) .endif

else goto STMLST endif

end;

78

STDELM is called when an intermediate or terminating statement

delimiter is expected to follow.

procedure STDELM;

begin

case CURSYM

of END : if system line label stack is empty

then return to DRIVER;

else goto FATAL($31) endif

of terminating statement delimiter : translate; - goto STMNXT;

of intermediate statement delimiter : translate; goto STMLST;

other missing statement delimiter, goto FATAL($20)

endcase

end

Two points should be clarified before these routines are more

completely described. At the beginning of the compilation of any

statement, when NXTSYM is the first symbol in the new statement,

CURITM will be equal to zero on all but two occasions: when the new

Statement is an arithmetic, comparison or prefix operator statement,

to be compiled by the routine STEXPR; and when the new statement is

labelled.

The second point is that the token values for intermediate and

terminating statement delimiters are in the ranges $EQ to SEF and

$FO to $FF respectively.

For the purposes of this description, the routines SIMPLE and

STRUCT may be considered to call the routines required to translate

79

the simple and the structured statements, respectively.

procedure STMLST;

begin

loop

if CURITM /= 0 then

gosub STEXPR; gosub ADVANC; goto STDELM;

else gosub ADVANC;

if CURSYM = ";" then goto STMNXT

orif CURSYM and $EOQ = $EO then goto STDEIM

else

case CURSYM

of GOTO, GOSUB, EXITLP, RETURN :

gosub SIMPLE; gosub ADVANC; goto STDELM;

of IF, CASE, LOOP : gosub STRUCT;

of "(" : gosub INSERT; ",;" => NXTSYM;

gosub ADVANC; goto STMNXT;

other goto FATAL($18)

endcase

endif

80

procedure STMNXT;

begin

loop

if CURIIM = LINLAB then

if NXTSYM = ";" then

gosub SETLAB;

XEQUST -> OPDISP; gosub PUTLIN; gosub ADVANC

orif NXTSYM = "," then gosub ADVANC; goto STMLST

else goto FATAL($19) endif

else goto SITMLST endif

endloop

end

For the purposes of this description, the routines DINTER and

DMTERM may be considered to translate the intermediate and terminating

statement delimiters, respectively.

procedure STDELM;

begin

case CURSYM

of END : if XPOINT /= 0 then

else return endif

of ";", ENDLOP, ENDIF, ENDCA :

gosub DMTERM; goto

of ELSE, ORIF, OF, OTHER :

gosub DINTER; goto

other goto FATAL($20)

endcase

end.

goto FATAL($31)

STMNXT ;

STMLST

81

4.5 Error Detection And Diagnostics

In the current implementation of GRASSHOPPER, the handling of

errors in the source code is rather primitive. A wide range of errors

are detectable, but, with one exception, there is no error recovery

attempted, so that the compilation ceases on the first error detected.

The single exception is the case of the same identifier being declared

more then once. In this case a warning is issued by the routine WARN,

called from INNAME, and all but the first declaration are ignored.

When a fatal error is detected, an error identifier is put

into the accumulator, and the routine FATAL is called. In the

algorithm descriptions given in this report, this is represented as:

goto FATAL(identification) ;

but in the compiler the transfer to fatal is always a subroutine jump.

FATAL prints out the error identifier, then pulls the return address

saved in the stack used by the MOS 6502 for subroutine jumps and

prints this out. The line of source code currently being scanned is

printed followed by a selected core dump of global variables and

arrays. The contents of ITMBUF and the statement label buffer,

LABELS, are also printed in their ASCII characters.

This information will just fit on the CRT terminal screen. If

a printer is activated for the run, then a hardcopy of this dump can

be obtained. Since NEXTLN always displays each line it enters into

STBUF1, the source program, up to the error, will also be printed.

Figure 4.3 gives an example of a compilation run, where the source

code is the example given in Figure 2.1, with SAVX in the declarations

82

istyped resulting in a second declaration of SAVE and then a fatal

error in the verb list.

The most important output to a user are the contents of the

statement buffer, and the error identification. This identifier may

be either a letter or a decimal number. “These are summarized in

Tables 4.3 and 4.4, respectively.

With the exception of "B", a letter will indicate a bug in the

compiler. The code to detect these errors was left in the compiler

assuming that there will be further developement.

TABLE 4.3: Compilation Error Summary: Letters.

Detecting

Error Routine Cause Of Error Stop

A NEXTLN STBUF1 has been overflowed.

B NEWREC Symbol table overflow, Need to increase

Space alloted

C OPSAVE Save Buffer overflow

D OPREST Save buffer underflow

E RDNUMX, Expecting number symbol, $, @, %.
RDVALX

G RDNMIN Overflow of STBUF1, or ITMBUF

There are thirty-one possible error numbers covering a wide

range of scanning, syntactic and semantic errors. Table 4.4 largely

summarizes the causes of these errors, only -two of them require

further comment.

83

Error number 1 will only result if there is a character

detected that has no legal context in the source code, except perhaps

in a comment, string or insert. Completely illegal characters include

"&" and most of the characters with ASCII values less then $20.

The absence of a right delimiter on keys, comments, inserts

and strings can result in a wide variety of error messages, only one

of which is number 3. If it happens with the “KEY” format, the error

message number 2 will result, since the first following character is

taken as an illegal character for this format. The other three cases

result in scanning errors. The following code will be read as part of

the comment, insert or string until one of two things happen. A

right delimiter may be encountered, for example:

! comment gosub ANYTHING; ! another comment !

In this example, the subroutine call will be read as comment and there

will be an attempt to read the second comment as_ code. The error

numbers which may result include, but are not limited to: 2, 4, 10,

11, 17, 18, 19, 20 and 23. This will not happen with the insert

because the left and right delimiters are not the same- In this case,

unless there is a nesting error, or a declaration missed, the error

May not be detected by the compiler. It will be during assembly

because GRASSHOPPER code will have been inserted into the object ies:

If no right delimiter is detected before the end of file is

read, then error number 3 will result, since SETSTR, INSERT and NEXTLN

all check for the escape character inserted as an end of file flag by

SRCMGR, [Section 3.2].

84

TABLE 4.4: Compilation Error Summary: Numbers.

Error Cause of Error Stop Detecting Routine

1 Illegal character found during CHRTYP
scan of source code.

2 Unrecognizable key found. RDKEY

3 Missing right delimiter for:

String(") SETSTR
Insert(]) INSERT

Comment (!) NEXTLN

4 Decimal numbers not implemented. RDNUMX

5 Empty string not allowed. INSTRG

6 Incomplete file, missing "end". ADVANC

7 Word literal is required for HEADER
program header statement.

8 Bad or missing initialization in DCLCON, DCLV8,

a declaration statement. May be a DCLARR, DCLV16,

word value where byte value needed. DCLCOP

9 Bad array length declared. DCLARR

10 A, X, Y, S, P are reserved as SRCHNM

variable names by assembler, "X" as
first letter reserved by compiler

val Error in declaration statement, may DCLST

be missing "," between identifiers,
or ";" at end of statement.

£2 Error in Constant declaration, DCLCON

expect "=",

13 Error in Zeropage declaration, DCLARE
expect: at Byte Value.

14 Error in Byte or Word declaration DCLV8, DCLV16
expect at, Tells See or Ost.

> Error in Array declaration, expect DCLARR
ek Daa sear.

16 Error in Condition declaration, DCLARR
expect mw" or U falls

85

TABLE 4.4: continued.

Error Cause of Error Stop Detecting Routine

17 Unrecognizable declaration statement, DCLARE
May be a missing begin.

18 Unrecognizable statement in the STMLST
Verb list.

19 May be undeclared identifier, or STMNXT

bad syntax in statement label.

20 Expect intermediate or terminating STDELM
statement delimiter, probably ";".

21 Bad or missing operator. STEXPR, STCOND,
STIF

22 Bad or missing destination in STGOSB, STGOTO
GOTO or GOSUB statement.

Zo Bad or missing operand. May be STEXPR, STCOND,
wrong data type or undeclared STIF; STCASE,
identifier. STOF

24 Missing or bad index on indexed OPINDX
data type, Arrays and Zeropage.

25 Error in IF or ORIF statement, STILE, STORIF
expect then

26 Error in CASE statement, expect of STCASE

27 Error in OF phrase of CASE STOF
statement, expect "," or ":",.

28 System line label stack overflow, XPUSH

the limit of nesting has been passed.

29 Nesting error, probably overlap of XPULL, XFNDJP
stuctured statements. STDELM

30 Nesting error, attempt to pull from XPULL, XFNDJP
empty sytem line label stack, may

be too many structure termination
delimiters, i.e. an extra endif.

at End of file before system line label STDELM
stack is empty, structured statement
incomplete, i.e. missing endif.

86

FIGURE 4.3: Example Of An Error Dump

“PROGRAM” GRSHOP $4000;

! This is a simplified version of the program
I used to store and retrieve the assembled version

of GRASSHOPPER. !

* CONSTANT’ DOS = $2A51, INWEKO = $2340,
OUTSTR = $2D73, SEEKA . = $26BC,
LDREAD = $2B1A, SAVE = $2C3A,

CR = SOD, LF = $0A, TOTAL = $02;

“BYTE” DSRNO “AT’ $265E, DSRLEN “AT’ $265F, SAVE;

x*ARKX RE-DECLARATION OF: SAVE

“ ARRAY’ ADDRESS() = ($91, $9D, $A9),
TRACK () = ($16, $18, $20);

“WORD’ ZADDRESS ‘AT’ $SFF;

“BEGIN’ $00 -> SAVX;

**kkK*KERROR #23 AT SAD9F, FOUND IN:
‘BEGIN’ $00 -> SAVX;

VARIABLES

OF 00 BA 53 89 3B 07 00 74 02 OD 00 80 O01 O1 09

OD 10 08 71 BO 15 00 00 00 00 53 00 00 00 O1 O1
01 00 00 00 52 95 CE 9F

ITEM BUFFER
24 30 30 35 46 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
00 00
$O05F

LABELS
00 00 00 00 00 00 53 41 56 58 00 00
SAVX

VECTORS
71 SF 71 32.-71 7A°71 BO* 71°68 71 9E 71 A7 71°95

00 00 71 05 70 99 71 29 70 90 71 17 70 EA 71 OE

DONE, T= Ol
Ax

CHAPTER 5

INPUT/OUTPUT AND FILE MANAGEMENT

5.1 Disk Input/Output Buffers

The compiler must read from a source file written in

Grasshopper and write to an object file in assembler code. Since the

memory available could be quickly exhausted if these files were kept

in core during translation, a system has been chosen which requires

only part of each of these files in core at a time. This is done

using the OS-65D supported disk input/output buffers [Ohio Scientific

1978,pp. 57-59].

For each disk I/O buffer used there is a area on the disk

which contains the complete file being accessed. The buffer itself is

long enough to contain the amount of information to be stored on each

track of this file, usually $C pages. When the input or output flag

has been set to indicate this buffer a call to a system I/O routine

will input from or output to that buffer. When the end of the buffer

has been reached, a track boundary has been crossed and transfer

between core and disk will be initiated and performed by the system.

Thus only one track of the file is in core at a time.

Before the translation begins, the disk buffer parameters,

which are described in Table 5.1, are initialized by PRIME to the

values shown. The first disk I/O buffer is used for reading from the

source file while the second is used to write the object file. After

translation is complete, the second disk I/0 buffer may contain

87

“88

information which has not yet been transferred to disk so FINISH

outputs zeros to the object file buffer until the last track has been

transferred.

TABLE 5.1: Parameters Required For The Disk I/O buffers

Location = Initialized Value

Parameter Disk Buffer l Disk Buffer 2

Buffer Start Low $2326 = $00 $232E = $00

Hi $2327 = $42 $232F = S4E

Buffer End Low $2328 = $00 “$2330 = $00

Hi $2329 = S4E $2331 = $5A

First track, (BCD) $232A = $65 $2332 = $68

Last track, (BCD) $232B = $67 $2333 = $76

Current track, (BCD) 232C = $64 2334 = $67

The input and output flags previously mentioned are used to

specify the I/0 devices to be used by a system input/output routine.

Each bit of an I/O flag refers to a different device, the disk 1/0

buffers l and 2 are specified by bits 5 and 6 respectively. The

values of these flags before translation are saved in the variables

SINFLG and SOTFLG by PRIME. When either of the disk I/0 buffers is

used the appropriate flag is set to that buffer. Immediatly after use

the flag is reset from SINFLG or SOTFLG.

5.2 Origins Of The Source File

Using the OS-65D assembler/editor, a source file is created

which includes line numbers, a carriage return (CR) at the end of each

line, and in which all repeated character strings have been packed

89

into a two character code. The source file is positioned in core,

usually starting at $317E, with a five byte header beginning at $3179

which gives information regarding the length and position of the file,

[Ohio Scientific 1976, p-4]. This header is outlined in Table 5.2.

SRCMGR pre-processes the source file to remove all line numbers,

unpack repeated character strings and add the ASCII escape character

($1B) as an end of file flag. As the file is processed it is placed

on the disk using Disk 1/0 buffer two.

TABLE 5.2: Source File Header,

(Ohio Scientific 1978, app. p- 4]

Byte # Memory Address Parameter

0 $3179 Source Start, Hi
1 $317A Source Start, Low

Zz $317B Source End, Hi
3 $317C Source End, Low

4 $317D Number Of Tracks

5 $317E Usual starting address
of the source file

5.3 Input From Source

The compiler expects to find the source file on disk as

pre-processed and placed by SRCMGR, and accesses it using Disk 1/0

buffer one. Reading of the source file is restricted to three

routines: NEXTLN, SETSTR and INSERT.

NEXTLN performs the first step in the lexical scan which is

supervised by the routine ADVANC [Chapter 6]. It reads one line of

code, terminated by a carriage return, from the source file into the

90

buffer STBUF1. All comments are deleted and only one space of any set

of consecutive spaces is included. When a character string or

assembler code insert is encountered the leading delimiter (" or [

respectively) is stored, followed by a carriage return to end line

input. This is done because the character string and insert are

special cases which are read by SETSTR and INSERT respectively.

SETSTR is called from INSTRG which is called when a character

string is to be read from the source file where it is delimited by

double quotes, into the object file where single quotes are to be

used. SETSTR reads the string from the source file into the buffer

ITMBUF in portions of no more then 40 characters. On returning from

SETSTR the accumulator is set to indicate: 00/ that the end of the

string was reached with no new characters transferred; 0O1/ that the

end of the string was found after reading one or more characters into

ITMBUF; or 02/ that the end of the string was not encountered.

INSERT transfers an assembler code insert from the source

where it is enclosed in square brackets, [text], to the object. The

removal of brackets is the only change made to such inserts and it is

the user’s responsibilty to insure that the insert is reasonable.

If the right delimiter of a comment, character string or

assembler code insert is missing then the left and right delimiters

will not match up and eventually the escape character [Section 5.2]

will be encountered. In this case an error stop is issued.

91

5-4 Output To Object

The first five bytes of the object file mist be reserved for

the header described in Section 5.2, this is done in PRIME. After the

object file has been written FINISH retrieves the first track,

calculates and places the values of the header parameters then returns

this back to disk. This manipulation of the first track is done using

the OS-65D routines for reading and writing a single track.

During the translation process itself the writing of a

character into the object file is restricted to PUTACC man is called

from: PUTLIN, INSERT, PUTXLB, and FINISH. PUTACC contains PUTOUT

which writes each character using system routine OUTCH and increments

the variable COUNT. COUNT is a two byte variable which always

contains the current length of the object file, it is used by FINISH

to calculate the end address for this file when it is loaded as the

source for the assembler. PUTACC calls PUTOUT for three different

purposes;

1/ to output the character received in the accumulator;

2/ to output two null characters ($00) after each

carriage return (CR), as blank line numbers;

3/ to output the repeat count when packing repeated

character strings into the two character code used

by the assembler/editor.

PUTACC will now be more precisely described:

92

procedure PUTACC(ACC) ;

procedure PUTOUT(ACC) ;

condition ZERO = $1;

begin OUTCH(A); inc COUNT lo;

if ZERO then inc COUNT hi endif

end

begin

A -> SAVA;

case LASTCH

of CR: ! blank line label !

gosub PUTOUT(S$00) ; gosub PUTOUT($00) ;

SAVA -> LASTCH; gosub PUTOUT(SAVA) ;

of SAVA: dec REPEAT; !repeated character !

other if REPEAT/=$00 then ! last character was the end

of a repeated character string !

gosub PUTOUT (REPEAT) ; $00 -> REPEAT;

endif

! output the current character !

SAVA -> LASTCH; gosub PUTOUT(SAVA)

endcase

end

|

CHAPTER 6

DESCRIPTION OF THE LEXICAL SCAN

The routines discussed in this chapter are used for the

lexical analysis of the source code. These routines operate on code

placed in the buffer STBUFl1 by NEXTLN and the X register is reserved

for the indexed addressing of this buffer. The routine ADVANC

supervises the lexical scan and is based on the basic scan used in

Halstead’s Pilot compiler, [Halstead 1974, p. 36], the purpose of

which is to obtain the next symbol-operand~symbol triplet. Each item

is inspected and the appropriate routine is called for reading an item

of its type- When a carriage return is encountered the routine NEXTLN

is called to extract the next line from source and place it in STBUF1.

The following algorithm gives a crude outline of what ADVANC does:

begin

NEXTSYM -> CURSYM;

if there is an operand then

read it and put its kind into CURIIM; will

call one of: RDNAME, INNAME or RDNUMX

endif

Read next symbol into NXTSYM; may call one of:

RDKEY1, RDKEY2 or GETSYM

end

This algorithm will be discussed in more detail in Section |

6.4. After execution of ADVANC, CURSYM will contain the previous

93

94

value of NXTSYM, NXTSYM will contain the next operator and CURIIM

will identify the next operand type. Table 6.1 summerizes the types

of operands which may be found. An operator may be the token

associated with a key word or may be a function of the CHRFLG value

for a single ASCII character as discussed in the next section.

Character strings and assembler code inserts are not read by ADVANC,

instead the leading delimiter is stored as NXTSYM, and in the case of

a string, CURIITM is set to STRING.

TABLE 6-1: Summary of Operand Types

CURITM Operand Type Additional Information Stored

NAME Identifier Stored in TABLES
Data Type -> NAMFLG

Record Location -> ZNAMFG

STRING Character string

NUMBER Number, Stored in ITMBUF

larger then BYTE2 Length -> ITMLEN

BYTE1 One Byte Number Same as for NUMBER

BYTE2 Two Byte Number Same as for NUMBER

LINLAB Statement Label Stored in LABLIN
as line label

JMPLAB Statement Label Stored in LABJMP

as operand

REG X or Y Register Stored in NAMFLG

ADDRES Constant used as Operand not yet read, CURITM set

Address when ind or loc is encountered

ACC Accumulator

PREOP Operand preceded Operand not yet read, CURIITM set
by Prefix Operator when a Prefix operator is encountered

95

In this chapter, descriptions of several routines will be

given using pseudo-GRASSHOPPER. In these descriptions, constant

declarations corresponding to the constant identifiers described in

Tables 4.1, 6.1 and 6.6 may be assumed, as well as the following

declarations:

byte CURITM, CURSYM, NXTSYM, CHRFLG, FOUND,

SAVX, SAVHI, TYPFLG ;

word LEGAL;

array LABJMP at $9060, LABLIN at $905A,
NAMVCT at $9066, KEYVCT at $9076,

STBUF1 at $5A00;

zeropage at $50, ZRECRD, ZNAMFG, ZNEXT;

6-1 Character Recognition

Recognition of the type and range of each item requires

recognition of character types and specification of what character

types are legal for what items.

Recognition of a character’s type is accomplished by the

routine CHRTYP. The ASCII value of the character is used to find a

number which has been encoded to give information on that character’s

type and use. This is done by subtracting $20 and using the result as

a displacement in the array CHRBUF, the value found at this

displacement is then placed in the byte variable CHRFLG. If ‘the

CHRFLG value found is equal to zero an illegal character has been read

and an error stop occurs.

The value placed in CHRFLG ‘has been encoded to give

information as shown in Tables 6.2 and 6.3.

96

TABLE 6.2: CHRFLG Values For Character Types

Character Type CHRFLG ~ Characters

Illegal $00

Operator $00 < CHRFLG < SOF {/<>=-+%:;

General SOF et denied CS
carriage return,

escape and space.

Number Type $10 SG
Symbol

Letters and $60 < CHRFLG < SEO AveoeZy AvoeZ,y

Digits Ort 2234 SeGe7. S29

TABLE 6.3: CHRFLG Values For Letters and Digits

BIT # CONTENTS

i 1 letter 0 not a letter

6 t"a-=>5 0 g ->z it digit, “0 "to 9

5 1 UPPER CASE 0 lower case 1

Q -> 4 0

The information encoded into CHRFLG is used mostly to detect

the type and range of an item being scanned, and, in the case of

operators, to give information to be used during the translation of

expressions. The four actual uses of CHRFLG will now be described.

I/ ADVANC, which determines how each item in source is to be

read in, will first test for special symbols then use CHRFLG to

differentiate between identifiers, lower case keys, decimal numbers

and other numbers. The algorithm for making this distinction is as

97

follows ;

with CHRFLG do

if BIT7 = $1 then “ft Tare 1

if BITS = $1 then read an identifier

else read key in lower case endif

orif BIT6 = $1 then read decimal number

orif BIT4 = $1 then read a number with base 2, 8 or 16

else store symbol in NXTSYM

endif

endwith

The complete algoritm for ADVANC is listed in Section 6-4.

II/ CLEGAL is called when scanning an identifier or a key word

to determine whether the current character is part of that item.

CLEGAL first calls CHRTYP to set CHRFLG, then makes an indirect jump

to the routine whose address is stored in LEGAL. This routine then

tests the specific bits of CHRFLG significant to the item being

scanned. The subroutine map for CLEGAL is given in Figure 6.1. Table

6.4 describes specifically what is being tested in each case-

FIGURE 6-1: Subroutine Map For CLEGAL

CLEGAL

98

TABLE 6.4: Summary of CHRNAM, CHRKY1 and CHRKY2

Routine Item Legal Character Type

CHRNAM Identifier %XX1X0000 numeral, or upper case letter

CHRKY1L * KEY’ 41XXX0000 letter, upper or lower case

CHRKY2 key %1X0X0000 lower case letter.

After execution of any of these routines, the second, or "Z"

bit of the processor status register will be set to 1 if the character

is legal or re-set to 0 if illegal.

III/ GETSYM uses CHRFLG to calculate a token value for each

operator and stores this value in NXTSYM. In Table 6.2 the CHRFLG

value of an operator is listed as between $00 and SOF. Table 6.5

shows the actual CHRFLG values for the operators, as well as the

values which must be entered into NXTSYM. NXTSYM for all the single

character operators is found by adding $80 to CHRFLG, the value for

two character operators is found by doing this calculation for the

first character and adding one. In the algorithm given below, note

that STBUF1,X is the character immediately following that for which

CHRFLG was found. The full algorithm for GETSYM is listed in Section

6.4.

if CHRFLG /= SOF then

if ((CHRFLG < $06) and (STBUF,X = "=")) or

((CHRFLG = $08) and (STBUF,X = ">"))

then inc CHRFLG; inc X; endif

CHRFLG or $80 -> NXTSYM;

endif

99

Table 6.5 only lists the operators represented by symbols, as

opposed to key words, which are included in Table 4.1. The operators

for mltiplication (*) and division (/) are included, but are not

available in this implementation of GRASSHOPPER.

TABLE 6.5: CHRFLG and NXTSYM Values For The Operators

Operator CHRFLG NXTSYM Operator CHRFLG NXTSYM

aafaie Tettegi then thggpase calculation Ie ggyt co gee

/= $82 - $08 - $88

< $03 $83 -> $89

<a $84 + SOA $8A

> $05 $85 * $OB $8B

>= 06 86 : $OC 8C

IV/ RDNUMH, which transfers a hexadecimal number from STBUF1

to ITMBUF, recognizes the end of the number when an illegal character

is read. A character is legal if it is a digit, 0 to 9, or an upper

case letter, A to F, so CHRFLG must be %X110 0000, thus:

if (CHRFLG and Z%01110000) = Z01100000

then legal for hexadecimal number

else not legal, end of number endif

100

6-2 The Symbol Tables

The symbol tables are maintained in two very simple hash

tables using a method similar to that found in [Lewis 1976,p.79]. The

first two letters of an item are added together and the lowest three

bits are extracted from the sum. The resulting number is multiplied

by two to give a displacement in a list pointer vector. If the item

only has one letter then the same calculation is performed without the

initial addition. These calculations are performed by the routine

MAP. ;
If the value found at this displacement is zero there is no

corresponding list and the item has not been tabulated. Otherwise the

value found is the address of the first record in a linked list which

is searched until there is a match or the end of the list is reached.

In the latter case the item has not been tabulated.

The buffer TABLES contains all language key words, followed by

all user identifier names, no line labels are tabulated. There are

separate list pointer vectors maintained for keys (KEYVCT), which are

entered by PRIME, and for identifiers (NAMVCT), which are entered

during translation of the declarations. The individual records are

formated as shown in Figure 6.2. Constants are used for key positions

in a record so that the record format may be easily changed. These

constants are described in Table 6.6.

The routines which search and build these tables are designed

so whenever possible the same code can be used on both tables; for

this reason the record format is the same for keys as for identifiers.

101

The addressing method allows access to all of core, but by adjusting

the = of TABLES and OVER the table space can be placed and its

size limited. The lowest three bytes are used in the mapping function

so that the result will be the same whether upper or lower case

letters are used.

I felt that a more elaborate method was not required for this

implementation but tried to program so that the method could be easily

refined or altered without side effects.

FIGURE 6.2: Record Format For The Symbol Tables

Up to six characters of the
key word or identifier name.

High address of next record.
Low address

Type fla name token (ke WIN DIN & WM ©

TABLE 6.6: Constants Describing Format of

Symbol Table Records

Identifier Value Meaning

TABLES $7000 Address for Start of Tables

TABLHI $70 High Part of Start Address

OVER $7B High Part of Overflow Address

MAX $05 Maximum of six characters stored

LINK $06 Address for next record stored in
Positions seven and eight

FLAG $08 Key Word Token, or Identifier Type
is Stored in the ninth position

SIZE 09 Size of Record

102

Figure 6.3 is a subroutine map for the routines which access

TABLES. INKEY is called by PRIME, the other root routines of this map

are called from ADVANC.

FIGURE 6.3: Subroutine Map For The Symbol Tables

RDKEY1 RDKEY2

INNAME

NEWREC

MAP CLEGAL

CLEGAL CMPARE CLEGAL

CLEGAL

These routines can be subdivided into three groups; l1/ Table

NEWREC CLEGAL

CLEGAL

Searching Routines: SRCHKY, SRCHNM, SEARCH and CMPARE; 2/ Table

Building Routines: NEWREC, INKEY and INNAME; 3/ and Table Reading

Routines: RDKEY1, RDKEY2, RDKEY and RDNAME.

6.2.1 Table Searching Routines

Three Zeropage variables are used- for indirect indexed

addressing of the contents of the symbol tables; ZRECRD points to

the record currently being examined; ZNAMFG points to the last

103

identifier record found by the list searching routine, SEARCH; and

ZNEXT indicates the next empty record to be used in building the

tables.

The variable FOUND is a flag which is set to indicate the

result of a search for a key word or identifier in the symbol tables.

There are two possible values:

00/ The item was found, ZRECRD has been set to point to

its record in the tables.

01/ The item has not been found in the symbol tables.

SRCHKY, which supervises the search for a key word, and SRCHNM

which supervises the search for an identifer, both use the routine MAP

to identify a linked list. If that list is not empty, they will set

ZRECRD to the address of its first record, and call the list searching

routine, SEARCH. SRCHNM differs from SRCHKY in that it must first

determine if the variable is a reserved or illegal name, [discussed at

the beginning of Chapter 2]. A fatal error is issued if: an attempt

is made to declare one of the reserved identifiers: A, X, Y, S or P;

if an attempt is made to use S or Pin the statement list; or if an

identifier beginning with "X" is encountered. When A, X or Y is

encountered in the statement list, CURITM is set to REG for the X and

Y registers, and to ACC for the accumulator.

The process of searching a single linked 1tee for 2. ‘Keys or

identifier is supervised by the routine SEARCH. ZRECRD initially

points to the head of the list, SEARCH will reset ZRECRD from the

link field of the record it points to until the comparison routine,

104

CMPARE, returns FOUND = 0 or the list has been completely checked.

procedure SEARCH;

begin
loop

gosub CMPARE;

if FOUND = 0 then exitloop

else LINK -> Y; ! try next record !

if ind ZRECRD,Y /= 0 then

ind ZRECRD,Y -> SAVHI; ineccy;

ind ZRECRD,Y -> ZRECRD lo; SAVHI -> ZRECRD hi;

else exitloop endif ! end linked list !

endif

endloop

return

end

The actual comparison of an item in STBUFl1 with the contents

of a table record is done by CMPARE. Before execution ZRECRD will

point to the record, X and SAVX will indicate the item’s position in

STBUF1. If the item does not match, X will be restored to this value,

so that the item can be compared to the next record. The variable

FOUND will be set to indicate whether or not a match was made.

6.2.2 Table Building Routines

The key words are entered into TABLES by INKEY which is called

from PRIME, [Section 4.1], during the initialization of the compiler.

MAP is used to find the required linked list then the routine NEWREC

105

discussed below is called to enter the key word into that list.

Identifiers are entered by INNAME during the translation of

the declarations. SRCHNM is called to determine whether the

identifier has already been entered, if it has a warning is issued and

the initial declaration will stand. Otherwise NEWREC is called to

enter the new record.

Every key and identifier in TABLES is entered by the routine

NEWREC into the next available record. The records used have been

outlined in Figure 6.2 and consist of: a six byte name field; a two

byte link field and a single byte flag field.

The key word or identifier will be read from the STBUF1 into

the name field. If the name is shorter the rest of this field is

filled with zeros, if it is longer the rest of the name is ignored.

The new record is entered at the beginning of a linked list by

putting its address into the pointer vector NAMVCT or KEYVCT and by

loading its link field with the address of its succeeding record in

that linked list. NEWREC also puts the address of the new record into

ZNAMFG.

Lastly, the value in TYPFLG is put into the FLAG field of the

new record. TYPFLG will have been set to a key word’s token by PRIME

or an identifiers type flag by DCLARE.

6.2.3 Table Reading Routines

The three routines which access the completed tables are:

RDKEY1 which searches for a key word which has occurred in the source

code delimited by single quotes; RDKEY2 which searches for a key word

106

which has been given in lower case letters; and RDNAME which searches

for an identifier.

RDKEY1 and RDKEY2 simply set LEGAL to the address of CHRKY1 or

CHRKY2 respectively, then call RDKEY.

procedure RDKEY;

begin gosub SRCHKY;

if FOUND = $00 then FLAG -> Y;

ind ZRECRD,Y -> NXISYM; ! key token !

else goto FATAL($02) endif

return

end

The function of RDNAME is complicated by the fact that

statement labels are not declared, and are therefore not stored in the

symbol tables. RDNAME assumes any undeclared identifer, which is not

a reserved name, [Section 6.2.1], is a statement label. Thus:

if the identifier is found in the tables then

put its type into NAMFLG;

put the address of its record in the tables into ZNAMFG.

orif CURSYM is a terminating statement delimiter, [Section 2.4] then

put the name in the buffer LABLIN to be used as line label;

LINLAB -> CURITITM;

else put the name in the buffer LABJMP to be used as an operand;

JMPLAB -> CURITM;

endif

107

6.3 Reading Numeric Literals

Each numeric literal encountered is copied from the buffer

STBUF1 to the buffer ITMBUF under the supervision of RDNUMX which is

called from ADVANC. When RDNUMX is called the variable ITMBFY will

contain the displacement of the next available position in ITMBUF.

This value is put in the Y register which is then used for indexed

addressing of ITMBUF. After RDNUMX has been executed, the variable

CURITM will be set to BYTE1, BYTE2 or NUMBER, [Table 6.1].

6.4 Scanning The Source Code

A crude algorithm for ADVANC was given at the beginning of

this chapter. The use of CHRFLG for recognition of the type of each

item to be read was developed in Section 6-1, and the routines for

reading each item type have been discussed in Sections 6-l to 6.3.

There is an additional routine within ADVANC, called ADVKEY which is

called after both RDKEY1 and RDKEY2 to detect: the prefix operators,

dec and inc; and the absolute or indirect addressing operators, loc

and ind. In the case of prefix operators the operand will not be read

during the current call of ADVANC, but CURITM will be set to PREOP-

procedure ADVKEY;

begin

if CURITM = $00 then

if (NXTSYM = LOC) or (NXTSYM = IND) then ADDRESS -> CURITM

orif (NXTSYM and $FO) = $90 then PREOP -> CURIIM endif

endif

end

108

NXTSYM will be given a new value every time ADVANC is called.

This value may be: a key word token found by RDKEY1 or RDKEY2; an

ACSII character such as ";" read by GETSYM; or an operator such as "+"

or "=>" for which the token mst be calculated by GETSYM. This last

case has already been discussed in Section 6.1. GETSYM must also set

CURITM to STRING when the string flag (") is encountered.

procedure GETSYM;

! finds NXTSYM when the next symbol is not a ae word !

constant STRFLG = $22; PWASCLI Meade: for iC")!

begin

STBUF1,X -> NXISYM; itic x;

if NXTISYM = STRFLG then ! literal character string !

if CURITM = $0 then STRING -> CURITM endif

orif CHRFLG /= SOF then

if ((CHRFLG < $06) and (STBUF1,X = "=")) or

((CHRFLG = $08) and (STBUF1,X = ">"))

then inc CHRFLG; inc X; endif

CHRFLG or $80 -> NXTSYM;

endif

end

The algorithm for ADVANC will now be completely described.

The basic function of this routine is to obtain the next

symbol-operand-symbol triplet, and it will be used by virtually every

translating routine discussed in Chapter four.

109

procedure ADVANC;

begin

$0 -> CURIIM; NXTSYM -> CURSYM;

if (CURSYM /= "[") and (CURSYM /= END) then

loop

case STBUFI1,X

of CR: gosub NEXTLN;

of ESC: goto FATAL($06) ;

of KEY: inc X; gosub RDKEY1; ! “KEY’ format found !

gosub ADVKEY; exitloop;

of SP: inc X;3

other gosub CHRTYP(STBUF1,X);

with CHRFLG do

if BIT7 = 1 then ! letter !

if BIT5 = 1 then NAME -> CURIIM;

if DCLFLG = 1 then gosub RDNAME

else gosub INNAME- endif

else gosub RDKEY2; gosub ADVKEY; exitloop

endif

orif BIT6 = 1 then goto FATAL(S$04)

orif BIT4 = 1 then gosub RDNUMX

else gosub GETSYM; exitloop endif

endwith
endcase

endloop

endif

end

CHAPTER 7

GENERATION OF OBJECT CODE

The final step in the translation of any portion of a

GRASSHOPPER program is the output of code to the object program. The

output of each line of object code is supervised by the routine PUTLIN

except where an assembler code insert has been used, in which case

INSERT is called. A major part of the task of the translating

routines discussed in chapter four is the preparation of information

to be used by PUTLIN.

The format of object code produced by the translator, and its

output using PUTLIN is discussed in this chapter. Figure 7.1 shows a

Subroutine map for the routines used by PUTLIN. In addition to these

there are two groups of utility routines discussed in sections 7.2 and

7.3 which are used by the translating routines to to prepare a line of

object code.

FIGURE 7.1: Subroutine Map For PUTLIN

o
e

putacc| PUTXLB

[putace PUTBYT

Com) Fre] on
110

EEL

7.1 The Object Code

Each line of code output by PUTLIN contains the following

fields: a blank line sees consisting of two bytes of value zero;

a line label field which may simply be eight spaces, or a space then a

line label of up to six letters followed by enough spaces to fill the

eight byte field; an operator field of variable length followed by a

single space; an operand field of variable length; and finally a

carriage return to indicate end-of-line.

Before PUTLIN is called by a translating routine, information

regarding the label, operator and operand fields must be placed in the

variables ZLABEL, ZITEM, ITMLEN and OPDISP, and often in one or more

of the buffers: ITMBUF, LABLIN or LABJMP.

7.1.1 The Label Field

A label on a line of object code may fall into one of three

categories: identifiers as line labels; user statement labels; and

System line labels. The first type only occurs during translation of

the declarations when an identifier found in TABLE may be used as a

line label to reserve its location in the data _ space. A user

statement label originates in the GRASSHOPPER source code and will

have been placed in the buffer LABLIN by RDNAME.

System line labels are generated by the translator and are

more thoroughly discussed in section 7.2. When encountered, PUTLIN

calls the routine PUTXLB which outputs the letter "X", followed by the

contents of the variables XKIND and XCRRNT. |

The two-byte variable ZLABEL, located on page zero, gives

112

information on the existence and location of a line label in the

following way:

case ZLABEL hi ! PUTLIN !

of $0: no line label, output eight spaces;

of SFF: system line label, call PUTXLB;

other

there is either a user statement label, or an identifier

used as a line label. Its address in LABLIN or TABLE

has been stored in ZLABEL. PUTLIN will access the label

to be output by using ZLABEL for indirect indexed

addressing;

endcase

7.1.2 The Operator Field

The Operator field will always be used and will contain an

item from the buffer OPLIST found at the displacement given in the

variable OPDISP. The operator will be either an opcode mnemonic or an

assembler directive.

7.1.3 The Operand Field

The contents of the operand field may be:

1/ non-existent;

2/ a system line label used as a branch operand;

3/ a user statement label to be read from the buffer LABJMP;

4/ the name of an identifier which is stored in TABLE;

5/ the contents of ITMBUF which may be; a literal number; an

identifier with additional characters for indexed addressing or for

Lis

indirect indexed addressing; or an identifier as part of a value

calculation.

In cases 3, 4 and 5 the address of the item to be used as operand will

be stored in ZITEM which will be used for indirect indexed addressing

of that item. In general, the variable ITMLEN characterizes the

operand to PUTLIN in the following way:

case ITMLEN

of S$FF: there is no operand, no action;

of SFE: system label is used as operand, call PUTXLB;

other
ITMLEN gives the length of the operand which is stored at

the address given in ZITEM;

endcase

7-2 System Line Labels

System line labels are labels which have been created by the

translator to be inserted into the object code. The format of these

labels must insure that the labels generated be unique, never conflict

with user identifiers or labels, and that a very large number of

labels be possible. A six character label format was chosen which

consists of: first the letter "X"; second a letter which indicates

what construct generated the label; followed by a four place

hexidecimal number which gives the sequence in which the labels are

generated.

These labels are pushed into a F.I.L-0 stack, SYSTLB, when

created, and pulled when needed. SYSTLB is a 28 byte buffer which can

114

contain up to 85 entries, overflow of this stack will result in an

error stop. The variables required to use and maintain the stack are:

XKIND which is assigned the classifying letter; XNEXT, a two byte

variable which is incremented each time a new label is created;

XCRRNT, a two byte variable which is given the value of the numerical

part of a label being pulled from the stack; and XPOINT which gives

the current displacement in the stack.

The following nine routines are available for accessing and

manipulating the stack, but only two of them operate directly on

SYSTLB: XPUSH and XPULL.

XPUSH pushes XKIND and XNEXT into the stack, increments XPOINT

by three to point to the next available position, and increments XNEXT

by one. If the stack will overflow then XPUSH causes an error stop.

XPULL pulls the top label from the stack, placing it in XKIND

and XCRRNT. XPOINT is decremented by three to point to the next label

in the stack. An attempt to pull from an empty stack results in an

error stop.

XPSHLB and XPSHOP both set XCRRNT from XNEXT then call XPUSH,

note that XNEXT mst be set before these routines are called. In both

cases the new label is going to be used in the next line of object

code, as line label in the first case and as operand in the second.

Thus, XPSHLB sets ZLABEL hi to S$FF and XPSHOP sets ITMLEN to SFE.

XPLJMP and XPLLAB are called with an expected value for XKIND

in the accumulator. This value is saved then XPULL is called to pull

the most recent label from the stack. If the type of the pulled label

agrees with the saved expected value then one line of object code is

115

emitted, otherwise a nesting error has occured and an error stop

results. The object code emitted is:

JMP LABEL or

LABEL =* respectively.

XPLBNC performs the same functions as XPLLAB except that there

is no check made of label kind.

XFNDJP is called to search for the most recent occurence of a

label of a particular type, the type specification is received in the

accumulator. XFNDJP saves the current value of XPOINT and calls XPULL

repetitively until a label of the required type is found or the stack

is empty. The latter case is a nesting error and results in an error

stop, otherwise a line of object code is emitted:

JMP XLABEL

then the original value of XPOINT is restored so that in effect no

label is pulled from the stack.

In addition to the above, there is a routine XNOPSH which sets

XCRRNT from XNEXT, sets ITMLEN to $FE then calls PUTLIN to emit a

line of object code with the new label as operand. The operator must

be set before XNOPSH is called. Note that the new label is not pushed

into the stack.

7-3 To Output A Line Of Object Code

PUTXLB is called from PUTLIN when a system line label is

encountered either as an operand or line label. It will output to

object; the letter "X"; the letter found in XKIND; then the four

hexidecimal characters representing the value found in XCRRNT. HXCHRH

116

and HXCHRL are used to output the ASCII characters for the high and

low parts respectively, of a hexidecimal number.

procedure PUTXLB;

procedure PUTBYT(A);

begin gosub HXCHRH(A) ; gosub PUTACC(A);

gosub HXCHRL(A) ; gosub PUTACC(A);

end

begin gosub PUTACC("X") ; gosub PUTACC(XKIND) ;

gosub PUTBYT(XCRRNT hi); gosub PUTBYT (XCRRNT lo);

end

PUTLIN, which supervises the output of each line of object

code, will now be more precisely described:

procedure PUTLIN;

begin

$40 -> OTFLAG; gosub PUTACC(SP);

case ZLABEL hi ! put the LABEL !

of $0: gosub PUTACC(SF9); ! put 8 spaces !

of SFF: gosub PUTXLB; ! system line label !

$0 -> ZLABEL hi; gosub PUTACC(SP);

other ! user line label !

$O -> Y;

loop

if ind ZLABEL,Y = $0 then

gosub PUTACC(SP); gosub PUTACC(Y + $FA); exitloop

117

else gosub PUTACC(ind ZLABEL,Y);

if Y = MAX then’ gosub PUTACC(SP); exitloop

else inc Y endif

endif

endloop

$0 -> ZLABEL hi

endcase

! put the OPERATOR !

OPDISP -> Y;

loop gosub PUTACC(OPLIST,Y);

if OPLIST,Y = SP then exitloop else inc Y endif

endloop

! put the OPERAND, if any !

if ITMLEN = SFE then gosub PUTXLB

orif ITMLEN /= S$FF then

if IMMFLG = $0 then ! immediate operand !

gosub PUTACC("#") ; $01 -> IMMFLG endif

$00 => Y;

loop if ind ZITEM,Y = $00 or Y > ITMLEN then exitloop

else gosub PUTACC(ind ZITEM,Y); inc Y endif

endloop

endif

SFF -> ITMLEN; gosub PUTACC(CR) ; SOTFLG -> OTFLAG;

end

Note that the last character output is the carriage return

which signals end-of-line, and that the flags ZLABEL and ITMLEN are

both reset to indicate empty fields.

118

There are nine routines used by the translating routines when

preparing a line of object code. These routines apply to frequently

occurring types of operands and line labels and need only brief

explanation here.

SETITM puts the address of the buffer ITMBUF into ZITEM, so

that the contents of ITMBUF will be the operand.

SETLAB puts the address of the buffer LABLIN into ZLABHI, so

that the line is labelled with a user line label.

SETZOP stores "00" in ITMBUF as operand and sets ITMLEN to

$Ol.

STLBOP puts the address of the buffer LABJMP into ZITEM, and

sets ITMLEN to 5 so that a user line label is the operand.

STNMIT puts the identifier found in the TABLE record found at

the address in ZNAMFG into the buffer ITMBUF, the current

displacement in ITMBUF is put into ITMBFY, and the length of the

identifier (ITMBFY - 1) is put into ITMLEN. SETITM is then called.

Thus an identifier name has been put in ITMBUF and set as the operand,

this is done when the identifier name is only part of the operand to

be output in the object code.

STNMLB puts the address found in ZNAMFG into ZLABEL so that

an identifier found in TABLE will be the line label. this is only used

during the translation of the declarations.

STNMOP puts the address found in ZNAMFG into ZITEM and sets

ITMLEN to 5 so that an identifier found in TABLE will be the operand.

STV16H is called when the high part of a WORD variable is to

119

be operand. This is done by using STNMIT to put the identifier into

ITMBUF, then using LITITM to add the characters "+1" so that the

second byte of the variable is referenced.

LITITM is used to add strings of characters to the contents

of ITMBUF. The character strings which may by used are found in the

buffer LITBUF, each separated by the null character (00). The

displacement of the string in LITBUF is to be put into the accumulator

before LITITM is called.

CHAPTER 8

DISCUSSION

8.1 Testing The Compiler

The first part of the compiler to be written was the character

recognition routine, [Section 6.1], followed by the routines required

to search, build and read the symbol tables. These were tested with

short, specific test routines, usually followed by a core dump of the

symbol tables and of the zero page variables. Preliminary versions of

ADVANC, DRIVER and FATAL were written and from this point on all new

code could be tested in the environment of the current state of the

GRASSHOPPER compiler.

As each new section was added to the developing compiler, it

was tested using source code written in the current state of the

GRASSHOPPER language, designed to cause all paths of the new code to

be executed. Appendix B contains two examples of these test programs,

TESTXY and TESTIF. TESTXY is devoted to the special addressing

problems involving indexed operands outlined in Section 3.3 and in

Table 3.3. The object code required for both the general and special

cases was outlined in Tables 3.4, 3.4, 3.6 and 3.8. In TESTXY, the

relational expression, simple assignment statement and the comparison

statement are tested for all cases where one operand is a register and

the other is an indexed operand. TESTXY is successfully compiled to

correct object code.

120

121

TESTIF tests the compilation of:

if condition then

where the condition may be a Condition variable or a _ relational

expression, [Section 3.5.1]. The generation of comparison and

branching code is tested for the eight kinds of Condition variables,

as well as for all possible cases of:

TERM RELATIONAL TERM;

OPERATOR

where both of the terms are variables, and where one or the other is a

register. TESTIF is successfully compiled to correct object code, and

an assembled listing of its object code is included in Appendix B.

Error detection code was tested by attempting to compile bad

code. After major revisions and additions were made, tested and

debugged, the old test programs were brought up to date and

re-compiled and their object codes quickly checked. At the time this

chapter was being written, they were compiled again, and the object

code checked in great detail: no errors in the compiler were found by

this check.

As the compiler became more advanced, working GRASSHOPPER

programs were written, compiled, their object code examined and

tested. The purpose of these programs was to test the usability of

the language itself, and to test the compiler with real programs.

These programs were generally re-written as the compiler became more

powerful. The most important of these was the GRASSHOPPER version of

SRCMGR, [Section 5.3], which eventually replaced the SRCMGR program

originally written in assembler.

122

When I decided to re-write FATAL, [Section 4.5], to give a

more readable error dump, I eure 4% in GRASSHOPPER. This was done

mainly because there was no reason to continue writing in assembler

when GRASSHOPPER had become a usable programming language, but also to

show that programs originally written in assembler code and programs

compiled from GRASSHOPPER could be successfully linked. Thus, the

compiler has been tested successfully with two programs in practical

use.

The GRASSHOPPER program, GRSHOP, shown in eae 2el fis

compiled to produce the assembler code object program shown in Figure

3.1. Examination of the object code, and comparison to the same

program written in assembler will show an increase of 13 bytes in the

version compiled from GRASSHOPPER. This increase was caused by four

unneccessary jumps generated in the object code and the inefficient

compilation of one of the assignment statements.

The first of the unneccessary jumps occurs in the following

Section of source code:

Source Code Object Code

if X = TOTAL then CPX #TOTAL

BNE XF0009

goto DOS JMP DOS

else... JMP XG0008

XFO009 =*

Obviously the second jump generated is redundant, as is the jump to

the operating system inserted at the end of the program by FINISH,

[Section 4.1], in this program. Both of these sous be easily found

and eliminated by a second optimizing pass, saving six bytes in the

object code.

23

The other two unneccessary jumps are not immediatlely obvious,

and would not be easily found by at optimizing pass. Each of the two

statement lists in the Case construct in Figure 2.1 when compiled, are

terminated by a jump to the end of the Case construct, [Section

3.5.2]. In this program these jumps are never executed because the

statement lists are enclosed in Loop constructs which contain no

Exitloop statements. NEXT, called in each loop, will transfer control

to the operating system when the program is complete.

The remaining extra byte results from the wa" the following

piece of code is compiled.

Actual Better

Source Code Object Code Object Code

X + $1 -> SAVX; TXA STX SAVX

CLC INC SAVX

Apc #$1
STA SAVX

It is possible to write the compiler to detect such cases and generate

code accordingly, this was beyond the scope of this project but could

be attempted as an extension to the compiler. The actual cost is

small, but if a programmer is really cramped for space, the addition

could be written:

X -> SAVX; inc SAVX;

which would be compiled to the object code listed as "Better Object

Code", above.

8.2 Use Of GRASSHOPPER

The purpose of developing GRASSHOPPER was to provide a

language which could be used for systems programming on the MOS 6502

124

microcomputer. It is a readable language, with the structured

constructs and strict data-typing of many high-level languages. On

the other hand it retains the flexibility and mch of the efficiency

of assembler code, which is required in a language to be used for

systems programming. As was mentioned in the previous’ section,

GRASSHOPPER was used successfully in the re-writing and expanding of

two compiler programs.

GRASSHOPPER, in its current state, is not suitable as a

teaching language. I have assumed that the user has a good

understanding of assembler code programming, and a new programmer

could too easily get into trouble using GRASSHOPPER. There are

changes which would make it more suitable for the student programmer.

HEADER could be altered to restrict the starting address to over

$3179, so that the operating system is not over-written.

The indirect indexed and indexed indirect operands are

currently written:

ind ZEROPG,Y;

ind ZEROPG, xX;

respectively, [Section 2.1.4]. This could be made more explicit by

changing the syntax to:

ZEROPG, ind, Y;

ZEROPG, X, ind;

While this would result in more fatal syntax errors, it may reinforce

the difference in the addressing modes. |

The direct access to the accumulator will be a dangerous

125

source of error if the user does not fully understand assembler code

programming. If GRASSHOPPER. should ever be used for teaching

purposes, it sould be altered so that the accumulator cannot be

explicitly accessed by the user.

With these changes, GRASSHOPPER could be useful as a_ teaching

language, where the student has had experience programming in a high

level language and is starting to learn the techniques. of

microcomputer programming. It is a simple, readable language, which

can be easily learned. Its data types, data addressing modes and data

manipulation operations are those which are available to the assembler

code programmer on the MOS 6502. Thus a student could be introduced

to working in the environment of a microprocessor without having to

learn the assembly language itself.

8.3 How The Language Be Further Developed

The greatest deficiency in the current implementation of

GRASSHOPPER is the primitive state of subroutine calls. Parameter

passing and the developement of function subprograms would both be

useful.

The data manipulation statements could be expanded in several

ways, including the implementation: of Word operand arithmetic; of

multiplication and division operations; and of complex assignment

statements. In the relational expression and the comparison and

assignment statements:

REGISTER OPERATOR REGISTER

is currently not allowed. It may be useful to extend the compiler to

126

permit two registers in such expressions. Another useful extension

would be the implementation of a multiple assignment, so that:

Expression -> RESULTL <-> RESULT2 -> RESULT3;

would be a legal assignment format. Also, GRASSHOPPER could be easily

extended to allow numbers of base ten.

The WITH construct described in the introduction to this

report, and used in algorithm descriptions, could be a _ useful

addition.

A second pass to the compiler should be written, both for the

purposes of error checking and optimization. Error checking could

then be done on line labels and for branch out of range, the latter of

which could be corrected by the second pass. Optimization would

include searching for consecutive jumps with no path to any but the

first, and storing from a register then reloading the same operand

into the same register. Checking for branch out of range and the

separate optimization of object code would have been made difficult in

the first pass by the assembler code inserts. A second pass which

would read all of the assembler code object program, both compiled and

inserted, would be easier to write.

Error recovery should be attempted, so that a parsing scan of

the source code can continue after a fatal error has been detected.

APPENDIX A

INDEX OF ROUTINES

Name Described Important References

ADVANC 6.4 CH.4, 5.3, CH.6, CH.5, 8.1
ADVKEY 6.4
ADVPRO 4.3

CHRKY 1 6.1 6.2.3

CHRKY2 6-1 6.2.3
CHRNAM 6.1
CHRTYP 6-1

CLEGAL 6-1
CMPARE 6.2.1

DCLARE 4.3 4.0, 4.1, 6.2.2

DCLARR 4.3
DCLCON 4.3
DCLCOP 4.3
DCLST 4.3

DCLV8 4.3
DCLV16 4.3
DCLZER 4.3
DRIVER 4.1 4.3, 4.4, 8.1
FATAL “4.5 numerous
FINISH 4.1 5-1, 5.4
GETS YM 6.1, 6.4 6-0
HEADER 4.1 4.0, 8.2
INKEY 6.2.2 4.1
INNAME 6.2.2 4.1, 4-5, 6-0, 6-4
INSERT 323 4.3, 4.4, 4.5

INSTRG 5.3 4.2
LITITM 7-3

MAP 6.2
NEWREC 6.2.2
NEXTLN 5.3 4.5, 6-0, 6-4
OPBILT 4.2.1 4.3
OPB1VR 4.2.1
OPB2LT 4.2.1

OPBYT1 4.2.1

OP JMP 4.2.1
OPREG 4.2.2
PRIME 4.1 eds ets O62

PUTACC 5.4 7.3

127

128

Index Of Routines, Continued

Name Described Important References

PUTLIN 404, 504, CHe7
PUTOUT
PUTXLB
RDKEY
RDKEY 1
RDKEY2
RDNAME
RDNUMX
REGMP1
REGMP2
SEARCH
SETI TM
SETLAB
SETSTR
SETZOP
SRCHKY
SRCHNM
SRCMGR
STDELM
STEXPR
STLBOP
STMLST
STMNXT
STNMIT
STNMLB
STNMOP
STV16H
VRBLST
WARN
XFNDJP
XNOPSH
XPLBNC
XPLJMP
XPLLAB
XPSHLB
XPSHOP
XPULL
XPUSH

bas aS dre Sa: Grier ge eae

* 6 Wo WB W W

e

mM Mh

e ° . J . a

o

4.3

4.0, 4.1

4.4

SAINNYNYY YN PRN RR YUP RUDDY DERDADHTTDDYUY

> . . A

NNMNNNNNNYN UE WWWWE WEE NNNWWWWNNDY WNHNH NYDN W FW

%

APPENDIX B

EXAMPLES OF TEST PROGRAMS

FIGURE B-l: Test Program, For Special Addressing Of

Indexed Operands

10 ’PROGRAM’ $4500;

20[; TESTXY]
30
40 ‘ARRAY’ ARRAY ($02) = ($01, $02);
50
60 “ZEROPAGE’ “AT’ $50, ZEROPG;
70
80 ’BEGIN’
90[; Relational Expressions]

100 “IF’ A = ARRAY,X ‘THEN’ [; A = ARRAY,X] ‘ENDIF’
110 “IF” ARRAY,X = A ’THEN’[; ARRAY,X = A] “ENDIF’
120 “IF’ X = ARRAY,X “THEN” [; X = ARRAY,X] ‘ENDIF’
130 “IF’ ARRAY,X = X “THEN’ [; ARRAY ,X = X] ’ENDIF’
140
150[; Simple Assignment Statements]

160[; ARRAY,REG -> REG]
170 ARRAY ,X -—> A; ARRAY ,Y => A;

180 ARRAY,X -> X;3 ARRAY,Y -> X;3

190 ARRAY,X -> Y; ARRAY, Y -> Y;
200
210[; ZEROPG,REG -> REG]

220 ZEROPG,X -> A; ZEROPG,Y -> A;
230 ZEROPG,X -> xX; ZEROPG,Y => X;
240 #ZEROPG,X -> Y; ZEROPG,Y -> Y;
250
260[; “IND’ ZEROPG,REG -> REG]
270 ‘IND’ ZEROPG,X -> A; “IND’ ZEROPG,Y -> A;
280 ‘IND’ ZEROPG,X => X; “IND’ ZEROPG,Y -> X;
290 ‘IND’ ZEROPG,X -> Y; “IND’ ZEROPG,Y -> Y;
300
310[; REG -> ARRAY,REG]
320 A -> ARRAY,X; A -> ARRAY,Y;
330 X -> ARRAY,X; X -> ARRAY,Y;
340 Y -> ARRAY,X; Y -> ARRAY,Y;
350
360[; REG -> ZEROPG,REG]
370 A -> ZEROPG,X; A -> ZEROPG,Y;
380 X -> ZEROPG,X; X -> ZEROPG,Y;
390 Y => ZEROPG,X; Y -> ZEROPG,Y;

129

130

410[; REG -> “IND’ ZEROPG,REG]
420 A-> “IND’ ZEROPG,X; A -> “IND’ ZEROPG,Y;
430 X-=-> “IND’ ZEROPG,X; xX -> ’IND’ ZEROPG,Y;
440 Y -> “IND’ ZEROPG,X; Y -> “IND’ ZEROPG,Y;

460; Conditional Statements]

470[3 REG : ARRAY,REG]

480 A: ARRAY,X; A : ARRAY,Y;

490 X : ARRAY,X; X : ARRAY,Y;

500 Y :; ARRAY,X; ¥ .:3-ARBRAY, Ys

510
520[;3 REG : ZEROPG,REG]
530 A: ZEROPG,X; A : ZEROPG,Y;

540 X: ZEROPG,X; X-:. ZEROPG,Y;
550°. Y £=ZEROPG;X; Y : ZEROPG,Y;
560
S7OL; REG : “IND’ ZEROPG,REG]

580 A: “IND’ ZEROPG,X; A: “IND’ ZEROPG,Y;
590 xX: “’IND’ ZEROPG,X; Xo “UND ZEROPG,.¥ 3

600 Y : “IND’ ZEROPG,X; Y : “IND’ ZEROPG,Y;

610
620[; ARRAY,REG : REG]

630 ARRAY,X : A; ARRAY,Y : A;

640 ARRAY,X : X; ARRAY ,Y =: “X:

650 ARRAY,X : Y3 ABRAY,¥ 3. -Y3

660

670[; ZEROPG,REG : REG]
680 ZEROPG,X : A;~ ZEROPG,Y : A;
690 ZEROPG,X : X; ZEROPG, Y : X;

700 ZEROPG,X: Y; ZEROPG,Y : Y;
710

720[; “IND’ ZEROPG,REG : REG]
730 “IND’ ZEROPG,X: A; “IND’ ZEROPG,Y : A;
740 “IND’ ZEROPG,X : X; “IND’ ZEROPG,Y : X;

750 “IND’ ZEROPG,X : Y; “IND’ ZEROPG,Y : Y;
760[;
770; Prefix Operator Statements]

780[; DECREMENT]
790 “DEC” ARRAY,X; “DEC’ ARRAY,Y;
800 “DEC” ZEROPG,X; DEC’ ZEROPG,Y;
810 “DEC” “IND’ ZEROPG,X; ‘DEC’ “IND’ ZEROPG,Y;

830[; INCREMENT]

840 “INC’ ARRAY,X; “INC’ ARRAY,Y;
850 “INC” ZEROPG,X; “INC’ ZEROPG,Y;
860 “INC’ “IND’ ZEROPG,X; ‘INC’ “IND’ ZEROPG,Y;

131

FIGURE B.2: Test Program, For The Translation Of:
2 if condition then

10 ’“PROGRAM’ $4500;
20[; TESTIF]
30 “BYTE’ AA = $10, BB = $20, CC;
40 ‘CONDITION’ CARRY = $0, NCARRY /= SO,
50 ZERO = $1, NZERO /= $l,
60 OVER = $6, NOVER /= $6,

70 NEG = $7, NOTNEG /= $7;

80

90 “BEGIN’

100[;
110; CONDITION variables]

120 AA : BB;

130 ei CARRY ‘THEN’ [; CARRY +}

140 “ORIF’ NCARRY “THEN’ [; NCARRY]

150 “ORIF’ ZERO ‘THEN’ [; ZERO _/]
160 “ORIF’ NZERO ‘THEN’ [; NZERO]

170 “ORIF’ OVER “THEN” [; OVER]

180 “ORIF’ NOVER ‘THEN’ [; NOVER]
190 “ORIF’ NEG “THEN’ [; NEG]
200 “ORIF’ NOTNEG ’THEN’ [; NOTNEG] “ENDIF’

2Y6{;

220; Relational Expressions

230; None-Register Terms]

240 ‘IF’ AA = BB ‘THEN’ [; AA = BB]
250 “ORIF’ AA /= BB ‘THEN’ [; AA /= BB]
260 “ORIF’ AA <-BB “THEN’ [; AA < BB]

270 “ORIF’ AA <= BB ‘THEN’ [; AA <= BB]

280 “ORIF’ AA > BB “THEN’ [; AA > BB]

290 “ORIF’ AA >= BB ‘THEN’ [; AA >= BB] “’ENDIF’
300[;

S735 With Register Terms

320; TERM = TERM]
330 “IF’ A = BB ‘THEN’ [; A = BB]
340 “ORIF’ BB =A ‘THEN’ [; BB=A]
350 “ORIF’ X = BB “’THEN’ [; X = BB]

360 “ORIF’ BB = X “’THEN’ [; BB =X]

370 “ORIF’ Y = BB ‘THEN’ [; Y = BB]

380 “ORIF’ BB = Y ‘THEN’ [; BB = Y]j] “’ENDIF’

390[;
400; : TERM /= TERM]

410 Me A /= BB ’THEN’ [; A /= BB]
420 “ORIF’ BB /= A ‘THEN’ [; BB /=A]
430 “ORIF’ xX /= BB “THEN’ [; X /= BB]
440 “ORIF’ BB /= X ‘THEN’ [; BB /=X Jj
450 “ORIF’ Y /= BB ’THEN’ [; Y /= BB]
460 “ORIF’ BB /= Y ‘THEN’ [; BB /= Y] “’ENDIF’

470[;
480;

490

510

520
530

540
550[;
560;

570
580

590
600
610
620

630[3
640;

650
660

670
680

690
700

710[;
720;

730
740
750
760
770
780
790
800

Stee

“ORIF’
“ORIF’

“ORIF’
“ORIF’

“ORIF’

IF’

“ORIF’
“ORIF’
“ORIF’
“ORIF’
“ORIF’

OER

“ORIF’
“ORIF’
“ORIF’
“ORIF’

“ORIF’

“TR*

“ORIF’
“ORIF’

“ORIF’
“ORIF’
“ORIF’

‘END’ ;

A

WN Ke AOA

<=

<=

<=

<=

<=

Wi NOM ESR Sy

BB

BB

BB

BB

BB

BB

BB

BB

BB

BB

= BB

BB

132

* THEN’
“ THEN’
’ THEN’

° THEN’
° THEN’

“ THEN’

* THEN’
° THEN’
* THEN’

“THEN’
* THEN’
° THEN’

“THEN”
* THEN’

° THEN’
“ THEN’
“THEN”
“ THEN’

* THEN’
’ THEN’
* THEN’
* THEN’
* THEN’
° THEN’

TERM < TERM]

BB] A
BB
x

BB

Y
BB

<

<

<

<

<

<

A]
BB]
xX]
BB]
s] “ENDIF”

TERM <= TERM]

BB] A

BB
».¢

BB
xy

BB

<=

A]
BB]
xX]
BB]
¥] “ ENDIF’

TERM > TERM]
BB] A

BB
Xx

BB
4

BB

>

-

>

>

>

>

A]
BB]
xX]
BB]

<] “ENDIF”

TERM >= TERM]

A
BB
xX

BB
x

BB

= BB
A
BB

Xx
BB
bs

]
]
]
]
]
] “ ENDIF’

4500
4500 4€0745

4503 00

4504 10
4505 20

4506 00
4507=

4507 ADO445
450A CD0545
450D 9003

450F 403245
4512=

4512 B003

4514 4¢€3245
4517=
4517 D003

4519 403245
451C=

451c F003

451E 403245
452l=

4521 5003

4523 4€3245
4526=
4526 7003

4528 403245
452B=

452B 1003

452D 403245
4530=
4530 3000

4532=
4532=

4532 ADO445
4535 CDO545

XM0000

BB

cc
XS0000

XFO0002

XF0003

XF0004

XF0005

XF0006

XF0007

XF0008

XFO009 =
XG0001 =

133

FIGURE B.3: Translation of Figure B.2

*= $4500
JMP XS0000

TESTIF

-BYTE 00

-BYTE $10
-BYTE $20

-BYTE 00

CONDITION variables

JMP XG0001

BCS XF0003
NCARRY

JMP XGO001
=*

BNE XFO004
ZERO

JMP XGOOO1
=x

BEQ XFO005
NZERO

JMP XGO001
=k

BVC XF0006
OVER

JMP XGO001

BVS XF0007
NOVER

JMP XGO001
=k

BPL XF0008
NEG

JMP XGO001
=*

BMI XFOO09
NOTNEG

Relational Expressions

None-Register Terms

LDA AA
CMP BB

4538 DO03

453A 4€7545
453D=
453D AD0445
4540 CDO0545
4543 F003

4545 407545
4548=
4548 ADO445
454B CDO545
454E B003

4550 4¢7545
4553=

4553 AD0445
4556 CDO545
4559 F002

455B B003
455D=

455D 4C€7545
4560=
4560 ADO445
4563 CD0545
4566 FOO5
4568 9003

456A 407545
456D=

456D AD0445
4570 CD0545
4573 9000

4575=
4575=

4575 CD0545
4578 DOO3

457A 4CA245
457D=
457D CD0545
4580 D003

4582 4CA245
4585=

>

XFOO0B

XFO00C

.
>

XFOOOD

XFOOOE

>

XFOOOF

.
>

XF0010

XFOO11
XGOO0A

XF0013

XF0014

BNE

JMP
=*

LDA
CMP
BEQ

JMP
=*

LDA

BCS

JMP

LDA
CMP
BEQ
BCS

=*

LDA
CMP
BEQ
BCC

CMP
BNE

JMP
=k

CMP

BNE

JMP
=x

134

XFOOOB
= BB

XGO00A

BB

XF000C
AA /= BB

XGOOO0A

AA
BB
XFOOOD

AA < BB
XGOQ00A

AA
BB
XFOOOE
XFOOOF

AA <= BB

XGOOOA

AA
BB
XFO0010
XF0010

AA >

XGO00A

BB

AA
BB
XFO0O11

AA >= BB

With Register Terms
TERM = TERM

BB
XF0013

A = BB

XG0012

BB

XF0014
BB =A

XG0012

4585 ECO545
4588 DO03

458A 4CA245
458D=

458D EC0545

4590 D003

4592 4CA245
4595=
4595 CC0545
4598 D003

459A 4CA245
459D=
459D CCOQ545
45A0 D000

45A2=
45A2=

45A2 CDO545
45A5 F003

45A7 4CCF45
45AA=
454A CD0545
45AD F003

45AF 4CCF45
45B2=
45B2 EC0545

45B5 F003

45B7 4CCF45

45BA=
45BA EC0545

45BD F003

45BF 4CCF45
45C2=
45C2 CC0545
45¢c5 F003

45¢7 4CCF45
45CA=
45CA CC0545
45CD FOOO

XFOO015

XF0016

XF0017

XF0018

XG0012

XFOO1A

XFOO1B

XFOO1C

XFOOLD

XFOOLE

CPX
BNE

JMP
=k

CPX

BNE

=k

CPY
BNE

JMP
=k

CPY
BNE

=*

=k

CMP
BEQ

JMP

CMP
BEQ

CPX
BEQ

JMP
=k

CPX
BEQ

=k

CPY

BEQ

JMP
=*

CPY
BEQ

135

BB
XFOO1L5

X =

XG0012

BB
XF0016

BB =

XG0012

BB

XF0017
Y=

XG0012

BB
XF0018

BB =

BB
XFOOL1A

A /=
XG0019

BB
XFOO1B

BB /=
XG0019

BB
XFOOLC

X /=
XG0019

BB

XFOO1D
BB /=

XG0019

BB
XFOOLE

Y /=
XG0019

BB
XFOOIF
BB /=

BB

x

BB

Y

TERM /= TERM

BB

A

BB

BB

45CF=
45CF=

45CF cD0545
45D2 B003

45D4 4C0246
45D7=
45D7 CDO545
45DA FOO5
45DC 9003

45DE 4C0246
45E1=
45E1 EC0545
45E4 B003

45E6 400246
45E9=

45E9 ECO545
45EC F005
45EE 9003

45FO 4€0246
45F3=
45F3 Cc0545
45F6 BO03

45F8 4C0246
45FB=
45FB CCO545
45FE FOO2
4600 9000

4602=
4602=

4602 CD0545
4605 F002
4607 B003
4609=

4609 4C€3546
460C=
460C CD0545
460F 9003

4611 4€03546

XFOOIF =
XG0019

>

>

XF0021

XF0022

XF0023

XF0024

XF0025

XF0026
XG0020

XF0028

XF0029

H il + *

CMP
BCS

=k

CMP

BEQ
BCC

=k

CPX
BCS

JMP
=k

CPX

BEQ
BCC

JMP
=k

CPY
BCS

CPY
BEQ
BCC

=*

CMP
BEQ
BCS

=x

CMP

BCC

136

BB
XFO021
A<

XG0020

BB

XF0022
XF0022
BB <

XG0020

BB

XF0023
X<

XG0020

BB
XF0024
XF0024
BB <

XG0020

BB
XFO0025
Ys

XG0020

BB

XF0026
XF0026
BB <

BB

XF0028
XF0029

A <=

XG0027

BB

XFOO02A

BB <=

XG0027

TERM < TERM

TERM <= TERM

4614=
4614 EC0545

4617 F002
4619 B003
461B=

461B 4€3546

461E=
461E EC0545

4621 9003

4623 4C€3546
4626=
4626 CCO0545

4629 FOO2
462B B003
462D=

462D 4C3546
4630=
4630 CC0545
4633 9000

4635=
4635=

4635 CDO545
4638 FOO5

463A 9003

463C 4C6846
463F=
463F CDO545
4642 B003

4644 406846
4647=
4647 ECO545
464A FOO5S
464C 9003

464E 406846
4651=
4651 EC0545
4654 BO003

4656 4C6846
4659=
4659 CC0545

.
>

>

.
?

XFOO2A =*
CPx
BEQ
BCS

XF002B =*

JMP
XFOO2C =*

CPX
BCC

XFO02D =*
CPY
BEQ
BCS

XFOO2E =*

XFOO2F =*
CPY

BCC

i *+ XF0030
XG0027 =*

CMP
BEQ
BCC

XF0032 =
CMP
BCS

JMP
XF0033 =*

CPX
BEQ
BCC

JMP
XF0034 =*

CPX
BCS

XF0035 =*
CPY

137

BB

XF002B
XF002C

X <= BB

XG0027

BB

XF002D
BB <= X

XG0027

BB

XF002E
XF002F

Y <= BB

XG0027

BB

XF0030
BB <= Y

BB

XF0032
XF0032

A > BB
XG0031

BB
XF0033
BB > A

XG0031

BB
XF0034
XF0034

xo >- BB

XG0031

BB
XF0035
BS: > Xx

XG0031

BB

TERM > TERM

465C F005
465E 9003

4660 4C6846
4663=
4663 CC0545
4666 BOOO

4668=
4668=

4668 CDO0545
466B 9003

466D 4C9B46
4670=

4670 CDO545
4673 F002
4675 B003

4677=

4677 4C9B46
467A=
467A ECO545
467D 9003

467F 4C9B46
4682=
4682 EC0545

4685 F002
4687 B003

4689=

4689 4C9B46
468C=
468¢C CC0545
468F 9003

4691 4C9B46
4694=
4694 ¢cc0545

4697 FOO2
4699 BOOO
469B=

46 9B=
469B=

469B 4C512A

>

XF0036

XF0037

XG0031

.
>

XF0039

XF003A

XF003B

XF003C

XF003D

XF003E

XFO03F

XF0040

” xF0041

XG0038

BEQ
BCC

JMP
=k

CPY

BCS

CMP
BCC

JMP
=k

CMP

BEQ
BCS
=k

ak

CPX
BCC

JMP
=*

CPX
BEQ
BCS
=*

JMP
=*

CPY

BCC

JMP
=k

CPY

BEQ
BCS
=*

=

=k

JMP

138

XF0036
XF0036

eee
XG0031

BB

XF0037
BB >

BB
XF0039

A >=
XG0038

BB

XFO03A
XF003B

BB >=

XG0038

BB

XFO03C

X >=

XG0038

BB
XF003D
XF003E

BB >=
XG0038

BB
XFOO3F

Y >=
XG0038

BB
XFO0040
XFO0041

BB >=

$2A51
- END

BB

BB

A

BB

BB

TERM >= TERM

REFERENCES

GRAHAM, R.M. [1975] Principles of Systems Programing. Toronto:

John Wiley & Sons, Inc.

HALSTEAD, M-H. [1974], A Laboratory Manual for Compiler and Operating

System Implementation. New York: American Eslevier Publishing

Company.

LEWIS II, P.-M-, D.J-ROSENKRANTZ, and R.E-STEARNS [1976], Compiler
Design Theory. Don Mills: Addison-Wesley.

MOS TECHNOLOGY, {[1976], MCS6500 Microcomputer Family Programing

Manual. Norristown, PA-: Mos Technoloty, Inc.

OHIO SCIENTIFIC, [1976], 65L-13 OSI 6502 Resident Assembler/Editor.

Hiram, Ohio 44234: Ohio Scientific Instruments.

OHIO SCIENTIFIC, [1978], OS-65D C3.0 User’s Manual,Preliminary Copy.

Ohio Scientific, Inc.

PRATT, T.W. [1975], Programming Languages: Design and

Implementation. Englewood Cliffs, N.J.: Prentice-Hall.

WIRTH, N. [1976], Algorithms + Data Structures = Programs. Englewood
Cliffs, N-J-: Prentice-Hall.

139

